北京课改版七年级下册第八章 因式分解综合与测试课后作业题
展开京改版七年级数学下册第八章因式分解专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.6x3y2=2x2y•3xy
C.t2﹣16+3t=(t+4)(t﹣4)+3t D.y2﹣6y+9=(y﹣3)2
2、下列多项式中能用平方差公式分解因式的是( )
A. B. C. D.
3、一元二次方程x2-3x=0的根是( )
A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-3
4、把分解因式的结果是( ).
A. B.
C. D.
5、下列运算错误的是( )
A. B. C. D.(a≠0)
6、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
7、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
8、如图,边长为a,b的长方形的周长为18,面积为12,则a3b+ab3的值为( )
A.216 B.108
C.140 D.684
9、若x2+ax+9=(x﹣3)2,则a的值为( )
A.﹣3 B.﹣6 C.±3 D.±6
10、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.
2、因式分解:__________.
3、分解因式:=____________.
4、把多项式分解因式的结果是______________.
5、若多项式能用完全平方公式进行因式分解,则________.
三、解答题(5小题,每小题10分,共计50分)
1、把下列各式因式分解:
(1)
(2).
2、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程
解:设x2+2x=y,
原式 =y(y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2+2x+1)2 (第四步)
(1)该同学第二步到第三步运用了因式分解的( )
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后?
.(填“是”或“否”)如果否,直接写出最后的结果
(3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.
3、因式分解:
(1)
(2)
(3)
4、把下列各式分解因式:
(1)6ab3-24a3b;
(2)x4-8x2+16;
(3)a2(x+y)-b2(y+x)
(4)4m2n2-(m2+n2)2
5、分解因式:
(1)4x2y﹣4xy2+y3.
(2)(a2+9)2﹣36a2.
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.a(x+y)=ax+ay是整式的计算,故错误;
B.6x3y2=2x2y•3xy,不是因式分解,故错误;
C.t2﹣16+3t=(t+4)(t﹣4)+3t,含有加法,故错误;
D.y2﹣6y+9=(y﹣3)2是因式分解,正确;
故选:D.
【点睛】
本题考查了因式分解的意义,注意:把一个多项式转化成几个整式积的形式叫做因式分解.
2、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
3、C
【解析】
【分析】
利用提公因式法解一元二次方程.
【详解】
解: x2-3x=0
或
故选:C.
【点睛】
本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.
4、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
5、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
6、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).
7、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
8、D
【解析】
【分析】
根据长方形的周长可知,由长方形的面积,可得,将代数式a3b+ab3因式分解,进而代入代数式求值即可.
【详解】
边长为a,b的长方形的周长为18,面积为12,
,,
故选D
【点睛】
本题考查了因式分解,代数式求值,整体代入是解题的关键.
9、B
【解析】
【分析】
由结合从而可得答案.
【详解】
解:
而
故选:B
【点睛】
本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.
10、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
二、填空题
1、2或-2##-2或2
【解析】
【分析】
先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.
【详解】
解:∵a2b2+a2+b2+1=4ab,
∴a2b2-2ab+1+a2-2ab+b2=0,
∴(ab-1)2+(a-b)2=0,
又∵(ab-1)2≥0,(a-b)2≥0,
∴ab-1=0,a-b=0,
∴ab=1,a=b,
∴a2=1,
∴a=±1,
∴a=b=1或a=b=-1,
当a=b=1时,a+b=2;
当a=b=-1时,a+b=-2,
故答案为:2或-2.
【点睛】
此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.
2、
【解析】
【分析】
直接提取公因式x,再利用平方差公式分解因式得出答案.
【详解】
解:原式=;
故答案为:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
3、3(x-1)2
【解析】
【分析】
直接提取公因式3,再利用完全平方公式分解因式得出答案.
【详解】
解:3x2-6x+3
=3(x2-2x+1)
=3(x-1)2.
故答案为:3(x-1)2.
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确运用公式法分解因式是解题关键.
4、##
【解析】
【分析】
直接提取公因式3x,再利用平方差公式分解因式即可.
【详解】
解:
=
=.
故答案为:.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
5、9或-7##-7或9
【解析】
【分析】
利用完全平方公式的结构特征判断即可求出m的值.
【详解】
解:∵多项式x2-(m-1)x+16能用完全平方公式进行因式分解,
∴m-1=±8,
解得:m=9或m=-7,
故答案为:9或-7
【点睛】
此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)用平方差公式分解即可;
(2)先提取公因式,再用平方差公式分解即可;
【详解】
解:(1)=(a2+1)(a2-1)= ;
(2)
=
=
=.
【点睛】
题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
2、(1)C;(2)否,;(3)
【解析】
【分析】
(1)根据题意可知,第二步到第三步用到了完全平方公式;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;
(3)仿照题意,设然后求解即可.
【详解】
解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,
故选C;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,
∴分解分式的结果为:,
故答案为:否,;
(3)设
∴
.
【点睛】
本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.
3、(1);(2);(3)
【解析】
【分析】
(1)利用提取公式法因式分解即可;
(2)利用提取公式法因式分解即可;
(3)提取公因式2y,在利用完全平方公式因式分解即可.
【详解】
解:(1);
(2)
(3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、(1)6ab(b+2a)(b-2a);(2)(x-2)2(x+2)2;(3)(x+y)(a+b)(a-b);(4)-(m+n)2(m-n)2
【解析】
【分析】
(1)先提取公因式,再按照平方差公式分解即可;
(2)先按照完全平方公式分解,再按照平方差公式分解即可;
(3)先提取公因式,再按照平方差公式分解即可;
(4)先按照平方差公式分解因式,再添负号,添括号,按照完全平方公式分解即可.
【详解】
解:(1)原式=6ab(b2-4a2)=6ab(b+2a)(b-2a).
(2)原式=(x2-4)2=(x-2)2(x+2)2.
(3)原式=(x+y)(a2-b2)=(x+y)(a+b)(a-b).
(4)原式=(2mn+m2+n2)(2mn-m2-n2)=-(m+n)2(m-n)2.
【点睛】
本题考查的是综合提取公因式,公式法分解因式,易错点是一定要分解彻底.
5、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.
【解析】
【分析】
(1)原式提取公因式y,再利用完全平方公式分解即可;
(2)原式先利用平方差公式,进一步用完全平方公式分解即可.
【详解】
解:(1)原式=y(4x2﹣4xy+y2)
=y(2x﹣y)2;
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试复习练习题: 这是一份北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。