初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题
展开京改版七年级数学下册第八章因式分解章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ay B.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2 D.x2﹣16+3x=(x+4)(x﹣4)+3x
2、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
3、下列分解因式结果正确的是( )
A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)
C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)
4、下列各式中,不能用平方差公式分解因式的是( )
A. B. C. D.
5、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
6、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).
A.勤学 B.爱科学 C.我爱理科 D.我爱科学
7、下列多项式中,能用平方差公式分解因式的是( )
A.a2-1 B.-a2-1 C.a2+1 D.a2+a
8、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
9、下列各式能用完全平方公式进行因式分解的是( )
A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9
10、将分解因式,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把多项式分解因式的结果是_________.
2、已知ab=2,a﹣b=﹣4,则a2b﹣ab2=___.
3、在实数范围内因式分解:x2﹣3=___,3x2﹣5x+2=___.
4、因式分解:______;______.
5、把多项式2m+4mx+2x分解因式的结果为____________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:(x2+9)2﹣36x2.
2、请将下列各式因式分解.
(1)3a(x﹣y)﹣5b(y﹣x);
(2)x2(a﹣b)2﹣y2(b﹣a)2.
(3)2xmyn﹣1﹣4xm﹣1yn(m,n均为大于1的整数).
3、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1
(1)求M(8);M(24);M[(c+1)2]的值;
(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值.
4、因式分解:
(1);
(2) (7x2+2y2)2﹣(2x2+7y2)2
5、已知,.
求:(1)的值;
(2)的值.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
2、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
3、D
【解析】
【分析】
分别对四个选项进行因式分解,然后进行判断即可.
【详解】
解:A、原式=b(a2+7a-1),故不符合题意;
B、原式=3y(x2﹣x+2),故不符合题意;
C、原式=2xy(4z﹣3xy),故不符合题意;
D、原式=﹣2a(a﹣2b+3c),故符合题意.
故选D.
【点睛】
本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.
4、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各项分析判断后利用排除法求解.
【详解】
解:A、,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
B、,两个平方项的符号相同,不能用平方差公式分解因式,符合题意;
C、,可写成(7xy)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意;
D、,可写成(4m2)2,可写成(5mp)2,两个平方项的符号相反,能用平方差公式分解因式,不合题意.
故选B.
【点睛】
本题考查了平方差公式分解因式.关键要掌握平方差公式.
5、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
6、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
7、A
【解析】
【分析】
直接利用平方差公式:,分别判断得出答案;
【详解】
A、a2-1=(a+1) (a-1),正确;
B、-a2-1=-( a2+1 ) ,错误;
C、 a2+1,不能分解因式,错误;
D、 a2+a=a(a+1) ,错误;
故答案为:A
【点睛】
本题主要考查了公式法分解因式,正确运用平方差公式是解题的关键.
8、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
9、A
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
【详解】
A. 9x2-6x+1 ,故该选项正确,符合题意;
B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
故选A
【点睛】
此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
10、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
二、填空题
1、
【解析】
【分析】
先提公因式,再根据十字相乘法因式分解即可.
【详解】
故答案为:
【点睛】
本题考查了因式分解,掌握因式分解的方法是解题的关键.
2、-8
【解析】
【分析】
将提取公因式,在整体代入求值即可.
【详解】
∵,,
∴.
故答案为:-8.
【点睛】
本题考查代数式求值和因式分解,利用整体代入的思想是解答本题的关键.
3、 (3x-2)(x-1)
【解析】
【分析】
前一个利用平方差公式分解;后一个利用十字相乘法因式分解即可.
【详解】
解:x2-3= x2-;
3x2-5x+2=(3x-2)(x-1).
故答案为:;(3x-2)(x-1).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
4、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:;
.
故答案为:,.
【点睛】
本题考查了用公式法分解因式,熟练掌握公式法分解因式是解决本题的关键.
5、
【解析】
【分析】
根据提公因式法因式分解,提公因式因式分解即可
【详解】
解:2m+4mx+2x
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
三、解答题
1、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
2、(1)(x﹣y)(3a+5b);(2)(a﹣b)2(x -y)(x +y);(3).
【解析】
【分析】
(1)首先将3a(x﹣y)﹣5b(y﹣x)变形为3a(x﹣y)+5b(x﹣y),然后利用提公因式法分解因式即可;
(2)首先将x2(a﹣b)2﹣y2(b﹣a)2变形为x2(a﹣b)2﹣y2(a﹣b)2,然后利用提公因式法分解因式即可;
(3)利用提公因式法分解因式即可求解;
【详解】
解:(1)3a(x﹣y)﹣5b(y﹣x)
=3a(x﹣y)+5b(x﹣y)
=(x﹣y)(3a+5b)
(2)x2(a﹣b)2﹣y2(b﹣a)2
=x2(a﹣b)2﹣y2(a﹣b)2
=(a﹣b)2(x2﹣y2)
=(a﹣b)2(x -y)(x +y)
(3)2xmyn﹣1﹣4xm﹣1yn
=
【点睛】
此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.
3、(1);;1;(2);
【解析】
【分析】
(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.
【详解】
解:(1)由题意得,
M(8)==;
M(24)==;
M[(c+1)2]=;
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',
则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,
∵x,y都是自然数,且1≤x≤y≤9,
∴满足条件的“吉祥数”有15、24、33
∴M(15)=,M(24)==,M(33)=,
∵>>,
∴所有“吉祥数”中M(d)的最大值为.
【点睛】
本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.
4、(1);(2)
【解析】
【分析】
(1)先提出公因式,再利用完全公式,即可求解;
(2)先利用平方差公式分解,再提公因式,然后利用平方差公式,即可求解.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
5、(1)48;(2)52
【解析】
【分析】
(1)原式提取公因式,将已知等式代入计算即可求出值;
(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值.
【详解】
解:(1)∵,.
∴;
(2)∵,.
∴.
【点睛】
此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键.
初中数学北京课改版七年级下册第八章 因式分解综合与测试复习练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试复习练习题,共16页。试卷主要包含了下列变形,属因式分解的是等内容,欢迎下载使用。
北京课改版七年级下册第八章 因式分解综合与测试练习: 这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了下列各式的因式分解中正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解中,正确的是等内容,欢迎下载使用。