初中数学北京课改版七年级下册第八章 因式分解综合与测试复习练习题
展开京改版七年级数学下册第八章因式分解章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将分解因式,正确的是( )
A. B.
C. D.
2、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).
A.勤学 B.爱科学 C.我爱理科 D.我爱科学
3、运用平方差公式对整式进行因式分解时,公式中的可以是( )
A. B. C. D.
4、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
5、下列从左边到右边的变形,是因式分解的是( )
A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)
C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z
6、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )
A.2 B.3 C.4 D.5
7、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
8、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
9、下列变形,属因式分解的是( )
A. B.
C. D.
10、下列因式分解正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:mx2﹣4mx+4m=________.
2、分解因式:______.
3、分解因式:__.
4、因式分解:__.
5、分解因式:________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解
(1)
(2)
2、把下列多项式分解因式:
(1)
(2)
3、分解因式
(1)
(2)
(3)
(4)利用因式分解计算:
4、仔细阅读下面例题,解答问题:
例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.
5、因式分解
(1)3xy﹣6y;
(2)a2﹣4b2.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
直接利用提取公因式法进行分解因式即可.
【详解】
解:+==;
故选C.
【点睛】
本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.
2、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
3、C
【解析】
【分析】
运用平方差公式分解因式,后确定a值即可.
【详解】
∵=,
∴a是2mn,
故选C.
【点睛】
本题考查了平方差公式因式分解,熟练掌握平方差公式是解题的关键.
4、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
5、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.
【详解】
解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;
B、,原式错误,不符合题意;
C、x2﹣x=x(x﹣1),属于因式分解,符合题意;
D、2yz﹣y2z+z=,原式分解错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.
6、C
【解析】
【分析】
根据十字相乘法进行因式分解的方法,对选项逐个判断即可.
【详解】
解:A、,不能用十字相乘法进行因式分解,不符合题意;
B、,不能用十字相乘法进行因式分解,不符合题意;
C、,能用十字相乘法进行因式分解,符合题意;
D、,不能用十字相乘法进行因式分解,不符合题意;
故选C
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.
7、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
8、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
9、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
10、A
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.
【详解】
解:A、,选项说法正确,符合题意;
B、,选项说法错误,不符合题意;
C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;
D、,选项说法错误,不符合题意;
故选A.
【点睛】
本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.
二、填空题
1、m(x-2)2
【解析】
【分析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=m(x2-4x+4)=m(x-2)2,
故答案为:.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
2、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
3、
【解析】
【分析】
会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解.
【详解】
解:,
,
,
故答案为:.
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式.
4、
【解析】
【分析】
先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续分解,从而可得答案.
【详解】
解:原式
,
故答案为:.
【点睛】
本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.
5、
【解析】
【分析】
原式提取公因式,再利用平方差公式分解即可.
【详解】
解:原式=,
=
故答案为:.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;
(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.
2、(1);(2)
【解析】
【分析】
(1)先提取公因式3x,然后利用平方差公式分解因式即可;
(2)先提取公因式-5a,然后利用完全平方公式分解因式即可.
【详解】
(1)
;
(2)
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.
3、(1);(2);(3);(4)
【解析】
【分析】
(1)先提取公因式,然后利用完全平方公式进行因式分解即可;
(2)先分组再用完全平方公式进行运算,再利用平方差公式进行求解;
(3)先利用完全平方公式进行因式分解,再用平方差公式进行因式分解即可;
(4)分别对分子和分母进行因式分解,然后求解即可.
【详解】
解:(1);
(2);
(3);
(4)
;
【点睛】
此题考查了因式分解,涉及了完全平方公式和平方差公式,解题的关键是掌握因式分解的方法以及完全平方公式和平方差公式.
4、另一个因式为(2x+13),k的值为65.
【解析】
【分析】
设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.
【详解】
解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)
则2x2+3x﹣k=2x2+(a﹣10)x﹣5a
∴,
解得:a=13,k=65.
故另一个因式为(2x+13),k的值为65.
【点睛】
此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.
5、(1);(2).
【解析】
【分析】
(1)利用提公因式法进行因式分解即可得;
(2)利用平方差公式进行因式分解即可得.
【详解】
解:(1)原式;
(2)原式,
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
北京课改版七年级下册第八章 因式分解综合与测试课时训练: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
北京课改版七年级下册第八章 因式分解综合与测试课时训练: 这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共15页。试卷主要包含了下列因式分解正确的是,下列各因式分解正确的是等内容,欢迎下载使用。