搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪科版九年级数学下册第24章圆定向测试试卷(含答案详解)

    难点解析沪科版九年级数学下册第24章圆定向测试试卷(含答案详解)第1页
    难点解析沪科版九年级数学下册第24章圆定向测试试卷(含答案详解)第2页
    难点解析沪科版九年级数学下册第24章圆定向测试试卷(含答案详解)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试测试题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试测试题,共35页。
    沪科版九年级数学下册第24章圆定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为(  )

    A.5 B. C. D.
    2、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )

    A.50° B.60° C.40° D.30°
    3、下列图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    4、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )

    A.20 m B.20m
    C.(20 - 20)m D.(40 - 20)m
    5、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )

    A. B. C. D.
    6、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )

    A.相交 B.相切
    C.相离 D.不确定
    7、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    8、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )

    A.4 B.6 C.8 D.10
    9、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是( )
    A.60 B.90 C.120 D.180
    10、计算半径为1,圆心角为的扇形面积为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
    2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.

    3、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.

    4、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°

    5、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

    (1)点M的纵坐标为______;
    (2)当最大时,点P的坐标为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,为的直径,为的切线,弦,直线交的延长线于点,连接.

    求证:(1);
    (2).
    2、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
    已知点O(0,0),Q(1,0)
    (1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
    (2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
    (3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围

    3、如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F.点E落在BA上,连接AF.

    (1)若∠BAC=40°,求∠BAF的度数;
    (2)若AC=8,BC=6,求AF的长.
    4、如图,AB是的直径,CD是的一条弦,且于点E.

    (1)求证:;
    (2)若,,求的半径.
    5、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
    (1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;

    (2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
    (3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.

    -参考答案-
    一、单选题
    1、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,

    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    2、A
    【分析】
    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
    【详解】
    解: 将△OAB绕点O逆时针旋转80°得到△OCD,

    ∠A的度数为110°,∠D的度数为40°,


    故选A
    【点睛】
    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
    3、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    4、D
    【分析】
    根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
    【详解】
    ∵人工湖面积尽量小,

    ∴圆以AB为直径构造,设圆心为O,
    过点B作BC ⊥,垂足为C,
    ∵A,P分别位于B的西北方向和东北方向,
    ∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
    ∴OC=CB=CP=20,
    ∴OP=40,OB==,
    ∴最小的距离PE=PO-OE=40 - 20(m),
    故选D.
    【点睛】
    本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
    5、D
    【分析】
    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
    【详解】
    解:设AB与CD交于点E,
    ∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,

    ∴CE=CD=,∠CEO=∠DEB=90°,
    ∵∠CDB=30°,
    ∴∠COB=2∠CDB=60°,
    ∴∠OCE=30°,
    ∴,
    ∴,
    又∵,即
    ∴,
    在△OCE和△BDE中,

    ∴△OCE≌△BDE(AAS),

    ∴阴影部分的面积S=S扇形COB=,
    故选D.
    【点睛】
    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
    6、B
    【分析】
    根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
    【详解】
    解:连接,

    ,点O为AB中点.

    CO为⊙C的半径,
    是的切线,
    ⊙C 与AB的位置关系是相切
    故选B
    【点睛】
    本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
    7、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    8、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    9、C
    【分析】
    根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.
    【详解】
    解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.
    故选C.
    【点睛】
    本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.
    10、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】

    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    二、填空题
    1、或
    【分析】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
    【详解】
    设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
    如图所示:

    ∵,
    ∴,,
    ∵点A绕点G顺时针旋转90°后得到点,
    ∴,,
    ∴,
    ∵轴,轴,
    ∴,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    ∴,
    ∴,
    在中,由勾股定理得:,
    解得:或,
    ∴或.
    故答案为:,.
    【点睛】
    本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
    2、5
    【分析】
    直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:根据直角三角形斜边上的中线等于斜边的一半,
    即可知道点到点A,B,C的距离相等,
    如下图:



    故答案是:5.
    【点睛】
    本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
    3、-2
    【分析】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
    【详解】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
    ∵直线AB的解析式为
    当x=0时,y=5,当y=0时,x=5
    ∴B(0,5),A(5,0)
    ∴AO=BO,△AOB是等腰直角三角形
    ∴∠BAO=90°
    当CN⊥AB时,则△ACN是等腰直角三角形
    ∴CN=AN
    ∵C
    ∴AC=7
    ∵AC2=CN2+AN2=2CN2
    ∴CN=
    当 C、M、N三点共线时,长度最小
    即MN=CN-CM=-2
    故答案为:-2.

    【点睛】
    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
    4、
    【分析】
    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
    【详解】
    解:连接,如图,

    PA,PB分别与⊙O相切




    故答案为:
    【点睛】
    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
    5、5 (4,0)
    【分析】
    (1)根据点M在线段AB的垂直平分线上求解即可;
    (2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
    【详解】
    解:(1)∵⊙M为△ABP的外接圆,
    ∴点M在线段AB的垂直平分线上,
    ∵A(0,2),B(0,8),
    ∴点M的纵坐标为:,
    故答案为:5;
    (2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
    理由:
    若点是x轴正半轴上异于切点P的任意一点,
    设交⊙M于点E,连接AE,则∠AEB=∠APB,
    ∵∠AEB是ΔAE的外角,
    ∴∠AEB>∠AB,
    ∵∠APB>∠AB,即点P在切点处时,∠APB最大,
    ∵⊙M经过点A(0,2)、B(0,8),
    ∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
    ∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
    设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
    而∠POD=90°,
    ∴四边形OPMD是矩形,从而OP=MD,
    由勾股定理,得
    MD=,
    ∴OP=MD=4,
    ∴点P的坐标为(4,0),
    故答案为:(4,0).

    【点睛】
    本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
    三、解答题
    1、(1)见解析;(2)见解析
    【分析】
    (1)连接,根据,可证.从而可得,,即可证明,故;
    (2)证明,可得,即可证明.
    【详解】
    证明:(1)连接,如图:

    ∵为的直径,为的切线,
    ∴,
    ∵,
    ∴,.
    ∵,
    ∴,
    ∴.
    在和中,

    ∴,
    ∴,
    ∵为的直径,
    ∴,即,
    ∴,
    ∵,
    ∴,
    ∴,即,
    ∵,
    ∴;
    (2)由(1)知:,
    又∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到.
    2、(1);(2);(3)或
    【分析】
    (1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
    (2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
    【详解】
    解:(1) O(0,0),Q(1,0),

    P1(0,-1),P2(,),P3(-1,1)
    不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:
    所以不满足OQ<PO<PQ且PO≤2,
    所以不是线段OQ的“潜力点”,
    同理:

    所以满足:OQ<PO<PQ且PO≤2,
    所以是线段OQ的“潜力点”,
    故答案为:P3
    (2)∵点P为线段OQ的“潜力点”,
    ∴OQ<PO<PQ且PO≤2,
    ∵OQ<PO,
    ∴点P在以O为圆心,1为半径的圆外
    ∵PO<PQ,
    ∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
    ∵PO≤2,
    ∴点P在以O为圆心,2为半径的圆上或圆内
    又∵点P在直线y=x上,
    ∴点P在如图所示的线段AB上(不包含点B)
    过作轴,过作轴,垂足分别为

    由题意可知△BOC和 △AOD是等腰三角形,

    ∴-≤xp<-
    (3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧
    当时,过时,
    即函数解析式为:
    此时 则

    当与半径为2的圆相切于时,则




    当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
    而PO<PQ,点P在线段OQ垂直平分线的左侧,

    同理:当过 则 直线为
    在直线上,
    此时
    当过时, 则

    所以此时:
    综上:的范围为:1<b≤或<b<-1
    【点睛】
    本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
    3、
    (1)65°
    (2)
    【分析】
    (1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;
    (2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.
    【小题1】
    解:在Rt△ABC中,∠C=90°,∠BAC=40°,
    ∴∠ABC=50°,
    ∵将△ABC绕着点B逆时针旋转得到△FBE,
    ∴∠EBF=∠ABC=50°,AB=BF,
    ∴∠BAF=∠BFA=(180°-50°)=65°;
    【小题2】
    ∵∠C=90°,AC=8,BC=6,
    ∴AB=10,
    ∵将△ABC绕着点B逆时针旋转得到△FBE,
    ∴BE=BC=6,EF=AC=8,
    ∴AE=AB-BE=10-6=4,
    ∴AF=.
    【点睛】
    本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.
    4、(1)见解析;(2)3
    【分析】
    (1)根据∠D=∠B,∠BCO=∠B,代换证明;
    (2)根据垂径定理,得CE=,,利用勾股定理计算即可.
    【详解】
    (1)证明:
    ∵OC=OB,
    ∴∠BCO=∠B;
    ∵,
    ∴∠B=∠D;
    ∴∠BCO=∠D;

    (2)解:∵AB是⊙O的直径,且CD⊥AB于点E,
    ∴CE=CD,
    ∵CD=,
    ∴CE=,
    在Rt△OCE中,,
    ∵OE=1,
    ∴,
    ∴;
    ∴⊙O的半径为3.
    【点睛】
    本题考查了圆周角定理,垂径定理,勾股定理,结合图形,熟练运用三个定理是解题的关键.
    5、(1)B和C;(2);(3)
    【分析】
    (1)根据图形可确定与点A组成的“成对关联点”的点;
    (2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
    (3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
    【详解】
    (1)如图所示:

    在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
    故答案为:B和C;
    (2)∵
    ∴在直线上,
    ∵点F与点E关于x轴对称,
    ∴在直线,
    如下图所示:

    直线和与分别交于点,,与直线分别交于,,
    由题可得:,
    当点E在线段上时,有的“成对关联点”
    ∴;
    (3)

    如图,当点G在上时,轴,在上不存在这样的矩形;

    如图,当点G在下方时,也不存在这样的矩形;

    如图,当点G在上方时,存在这样的矩形GMNH,
    当恰好只能构成一个矩形时,
    设,直线与y轴相交于点K,
    则,,,,,
    ∴,即,
    ∴,
    解得:或(舍),
    综上:当时,点G,H是的“成对关联点”.
    【点睛】
    本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.

    相关试卷

    数学九年级下册第24章 圆综合与测试课后练习题:

    这是一份数学九年级下册第24章 圆综合与测试课后练习题,共34页。

    九年级下册第24章 圆综合与测试综合训练题:

    这是一份九年级下册第24章 圆综合与测试综合训练题,共29页。试卷主要包含了下列说法正确的个数有,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试达标测试:

    这是一份初中数学第24章 圆综合与测试达标测试,共25页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map