数学九年级下册第24章 圆综合与测试课后练习题
展开
这是一份数学九年级下册第24章 圆综合与测试课后练习题,共34页。
沪科版九年级数学下册第24章圆定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的边经过圆心,与圆相切于点,若,则的大小等于( )
A. B. C. D.
2、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
3、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
4、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
5、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
A.5 B. C. D.
6、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P. A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是( )
A.20 m B.20m
C.(20 - 20)m D.(40 - 20)m
7、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
8、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
A.cm B.cm C.cm D.cm
9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
10、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.
2、点(2,-3)关于原点的对称点的坐标为_____.
3、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.
4、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.
5、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、综合与实践
“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.
使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.
为了说明这一方法的正确性,需要对其进行证明.
独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.
已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.
探究解决:(2)请完成证明过程.
应用实践:(3)若半圆的直径为,,求的长度.
2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
(1)求A,B两点的坐标;
(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
①求点F的坐标;
②直接写出点P的坐标.
3、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.
(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;
(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;
(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.
4、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
5、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
-参考答案-
一、单选题
1、A
【分析】
连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
【详解】
解:连接,
,
,
与圆相切于点,
,
,
故选:A.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
2、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
3、B
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.是轴对称图形,不是中心对称图形,故不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
5、D
【分析】
连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
【详解】
解:连接OF,OE,OG,
∵AB、BC、CD分别与相切,
∴,,,且,
∴OB平分,OC平分,
∴,,
∵,
∴,
∴,
∴,
,
∴SΔOBC=12OB·OC=12BC·OF,
∴,
故选:D.
【点睛】
题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
6、D
【分析】
根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.
【详解】
∵人工湖面积尽量小,
∴圆以AB为直径构造,设圆心为O,
过点B作BC ⊥,垂足为C,
∵A,P分别位于B的西北方向和东北方向,
∴∠ABC=∠PBC=∠BOC=∠BPC=45°,
∴OC=CB=CP=20,
∴OP=40,OB==,
∴最小的距离PE=PO-OE=40 - 20(m),
故选D.
【点睛】
本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.
7、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
8、C
【分析】
直接根据题意及弧长公式可直接进行求解.
【详解】
解:由题意得:的圆心角所对弧的弧长是;
故选C.
【点睛】
本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
9、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.不是轴对称图形,是中心对称图形,故此选项不符合题意;
C.是轴对称图形,也是中心对称图形,故此选项合题意;
D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
二、填空题
1、##
【分析】
连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
【详解】
解:连接,取的中点,连接,
,
点在以为圆心,为半径的圆上,
当、、三点共线时,最小,
是直径,
,
,,
,,
在中,,
,
故答案为:.
【点睛】
本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
2、 (-2,3)
【分析】
根据“关于原点对称的点的坐标关系,横坐标与纵坐标都互为相反数”,即可求解.
【详解】
点(2,-3)关于原点的对称点的坐标是(-2,3).
故答案为: (-2,3).
【点睛】
本题主要考查点关于原点对称,解决本题的关键是要熟练掌握关于原点对称点的坐标的关系.
3、##
【分析】
连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.
【详解】
解:连接OA、OC,如图,
∵四边形ABCD是⊙O的内接四边形,∠D=110°,
∴,
∴,
∴;
故答案为:.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.
4、
【分析】
分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.
【详解】
解:当点P与点O重合时,
∵OA=OC,
∴,即;
当点P与点B重合时,
∵AB是的直径,
∴,
∴x的取值范围是.
【点睛】
此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.
5、
【分析】
先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
【详解】
解:∵BC是圆O的切线,
∴∠OBC=90°,
∵四边形ABCO是平行四边形,
∴AO=BC,
又∵AO=BO,
∴BO=BC,
∴∠BOC=∠BCO=45°,
∵OD=OB,
∴∠ODB=∠OBD,
∵∠ODB+∠OBD=∠BOC,
∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
故答案为:22.5°.
【点睛】
本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
三、解答题
1、(1),,将三等分;(2)见解析;(3)
【分析】
(1)根据题意即可得;
(2)先证明与全等,然后根据全等的性质可得,再由圆的切线的性质可得,可得三个角相等,即可证明结论;
(3)连,延长与相交于点,由(2)结论可得,再由切线的性质,,然后利用勾股定理及线段间的数量关系可得,最后利用相似三角形的判定和性质求解即可得.
【详解】
解:(1),,将三等分,
故答案为:;,将三等分,
(2)证明:在与中,
,
,
.
,
是的切线.
、都是的切线,
,
,
,将三等分.
(3)如图,连,延长与相交于点,
由(2),知.
是的切线,
,
,.
∵半径,
∴由勾股定理得,在中,
,,
.
∵,
,
,
,即,
.
【点睛】
题目主要考查全等三角形的判定和性质,相似三角形的判定和性质,圆的切线的性质,勾股定理等,理解题意,结合图形综合运用这些知识点是解题关键.
2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
【分析】
(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
(2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
【详解】
(1)令x=0,得y=2,
∴点B的坐标为B(0,2);
令y=0,得-+x+2=0,
解得
∵点A在x轴的负半轴;
∴A点的坐标(-1,0);
(2)设C的坐标为(x,-+x+2),
∵AC=BC,A(-1,0),B(0,2),
∴,
∵A(-1,0),B(0,2),
∴,
即,
设t=-+x,
∴,
∴,
∴,
∴,
整理,得,
解得
∵点C在y轴右侧的抛物线上,
∴,
此时y=,
∴点C的坐标(,);
(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,
∵B,E都在抛物线上,
∴B,E是对称点,
∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
∵抛物线的对称轴为直线x=,B(0,2),
∴点E(3,2),BE=3,
∵EF=BO=2,
∴BF=1,
∴点F的坐标为(1,2);
②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
∵BE=3,
∴BM=,
∵∠BPE=90°,PB=PE,
∴PM=BM=,
∴PM=BM=,
∴PN=2-=,
∴点P的坐标为(,).
【点睛】
本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
3、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.
【分析】
(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;
(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;
(3)分两种情形分别求解即可解决问题.
【详解】
解:(1)结论:EF=BE+DF.
理由:延长FD至G,使DG=BE,连接AG,如图①,
∵ABCD是正方形,
∴AB=AD,∠ABE=ADG=∠DAB=90°,
∴△ABE≌△ADG(AAS),
∴AE=AG,∠DAG=∠EAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠DAF+∠DAG=45°,
∴∠GAF=∠EAF=45°,
∵AF=AF,
∴△GAF≌△EAF(AAS),
∴EF=GF,
∴GF=DF+DG=DF+BE,
即:EF=DF+BE;
(2)结论:EF=DF-BE.
理由:在DC上截取DH=BE,连接AH,如图②,
∵AD=AB,∠ADH=∠ABE=90°,
∴△ADH≌△ABE(SAS),
∴AH=AE,∠DAH=∠EAB,
∵∠EAF=∠EAB+∠BAF=45°,
∴∠DAH+∠BAF=45°,
∴∠HAF=45°=∠EAF,
∵AF=AF,
∴△HAF≌EAF(SAS),
∴HF=EF,
∵DF=DH+HF,
∴EF=DF-BE;
(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:
设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.
在Rt△EFC中,(x+2)2=(4-x)2+22,
∴x=,
∴EF=x+2=.
②当NA经过BC的中点G时,同(2)作辅助线,
设BE=x,由(2)的结论得EC=4+x,EF=FH,
∵K为BC边的中点,
∴CK=BC=2,
同理可证△ABK≌FCK(SAS),
∴CF=AB=4,EF=FH=CF+CD-DH=8-x,
在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,
∴x=,
∴EF=8-=.
综上,线段EF的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
4、
(1)见解析
(2)
【分析】
(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
(2)证明,得出对应边成比例,即可求出的长.
(1)
证明:连接,如图所示:
是的直径,
,
,
,
,
,
,
即,
是的切线;
(2)
解:的半径为,
,,
,
,
,
,
,
又,
,
,
即,
.
【点睛】
本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
5、(1);(2);(3)或
【分析】
(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
【详解】
解:(1) O(0,0),Q(1,0),
P1(0,-1),P2(,),P3(-1,1)
不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以满足:OQ<PO<PQ且PO≤2,
所以是线段OQ的“潜力点”,
故答案为:P3
(2)∵点P为线段OQ的“潜力点”,
∴OQ<PO<PQ且PO≤2,
∵OQ<PO,
∴点P在以O为圆心,1为半径的圆外
∵PO<PQ,
∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
∵PO≤2,
∴点P在以O为圆心,2为半径的圆上或圆内
又∵点P在直线y=x上,
∴点P在如图所示的线段AB上(不包含点B)
过作轴,过作轴,垂足分别为
由题意可知△BOC和 △AOD是等腰三角形,
∴
∴-≤xp<-
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧
当时,过时,
即函数解析式为:
此时 则
当与半径为2的圆相切于时,则
由
而
当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧,
同理:当过 则 直线为
在直线上,
此时
当过时, 则
所以此时:
综上:的范围为:1<b≤或<b<-1
【点睛】
本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。
这是一份数学九年级下册第24章 圆综合与测试习题,共30页。
这是一份沪科版第24章 圆综合与测试综合训练题,共27页。试卷主要包含了下列语句判断正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。