搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪科版九年级数学下册第24章圆重点解析练习题(无超纲)

    难点解析沪科版九年级数学下册第24章圆重点解析练习题(无超纲)第1页
    难点解析沪科版九年级数学下册第24章圆重点解析练习题(无超纲)第2页
    难点解析沪科版九年级数学下册第24章圆重点解析练习题(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第24章 圆综合与测试巩固练习

    展开

    这是一份初中数学第24章 圆综合与测试巩固练习,共32页。
    沪科版九年级数学下册第24章圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的个数有(    ①方程的两个实数根的和等于1;②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.A.2个 B.3个 C.4个 D.5个2、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(    A. B. C. D.3、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.4、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.5、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(    A. B.C. D.6、如图,AB的直径,弦CDAB于点P,则CD的长为(    A. B. C. D.87、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断8、下列四个图案中,是中心对称图形的是(  )A. B.C. D.9、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(    A.19° B.38° C.52° D.76°10、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻AB,在小路l上有一座亭子PAP分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻AB原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是(   A.20 m B.20mC.(20 - 20)m D.(40 - 20m第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.2、如图,在中,,分别以边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当时,则阴影部分的面积为__________.3、如图,点ABC在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为 _____.4、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.5、如图,点D为边长是的等边△ABCAB左侧一动点,不与点AB重合的动点D在运动过程中始终保持∠ADB=120°不变,则四边形ADBC的面积S的最大值是 ____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠ACB=90°,AC=BCDAB边上一点(与AB不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DEBE(1)求证:△ACD≌△BCE(2)若BE=5,DE=13,求AB的长2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PBAB,∠PBA=∠C(1)求证:PB是⊙O的切线;(2)连接OP,若OPBC,且OP=8,⊙O的半径为3,求BC的长.3、如图,的直径,的切线,弦,直线的延长线于点,连接求证:(1)(2)4、如图AB是⊙O的直径,弦CDAB于点E,作∠FAC=∠BAC,过点CCFAF于点F(1)求证:CF是⊙O的切线;(2)若sin∠CAB=,求=_______.(直接写出答案)5、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明. -参考答案-一、单选题1、B【分析】根据所学知识对五个命题进行判断即可.【详解】1、,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.2、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.【详解】解:设ABCD交于点EAB是⊙O的直径,弦CDABCD=2,如图,CE=CD=,∠CEO=∠DEB=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠OCE=30°,又∵,即在△OCE和△BDE中,∴△OCE≌△BDEAAS),∴阴影部分的面积S=S扇形COB=故选D.【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.3、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.4、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5、A【分析】设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当上时, 上时,延长交于点 同理: 为等边三角形, 上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.6、A【分析】过点于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点于点,连接 AB的直径,中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.7、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.8、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.9、B【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.10、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当OP共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O过点BBC,垂足为CAP分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,OC=CB=CP=20,OP=40,OB==∴最小的距离PE=PO-OE=40 - 20m),故选D【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.二、填空题1、60【分析】根据弧长公式求解即可.【详解】解:解得,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.2、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即【详解】解:中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.3、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D∵四边形OABC为平行四边形,∴四边形OABC为菱形, 为等边三角形,中,设,则解得:(舍去),的长为:故答案为:【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.4、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AODO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AODO∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,ADO=∠A(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.5、【分析】根据题意作等边三角形的外接圆,当点运动到的中点时,四边形ADBC的面积S的最大值,分别求出两个三角形的面积,相加即可.【详解】解:根据题意作等边三角形的外接圆,D在运动过程中始终保持∠ADB=120°不变,在圆上运动,当点运动到的中点时,四边形ADBC的面积S的最大值,过点的垂线交于点,如图:中,解得:过点的垂线交于故答案是:【点睛】本题考查了等边三角形,外接圆、勾股定理、动点问题,解题的关键是,作出图象及掌握圆的相关性质.三、解答题1、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE(2)由∠ACB=90°,ACBC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BEAD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.【详解】解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CECDCE,∠DCE=90°=∠ACB∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCESAS);(2)∵∠ACB=90°,ACBC∴∠CAB=∠CBA=45°,∵△ACD≌△BCEBEAD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,AB=AD+BD=17.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.2、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长.(1)证明:连接,如图所示:的直径,的切线;(2)解:的半径为【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.3、(1)见解析;(2)见解析【分析】(1)连接,根据,可证.从而可得,即可证明,故(2)证明,可得,即可证明【详解】证明:(1)连接,如图:的直径,的切线,中,的直径,,即  ,即(2)由(1)知:又∵  【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到4、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CFAF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得,可得BE=AB=,进而可得AE=,根据三角形面积公式即可得答案.(1)(1)如图,连接OCOA=OC∴∠CAB=∠ACO∠FAC=∠BAC∴∠FAC=∠ACOAF//OC∴∠AFC+∠OCF=180°,CFAF∴∠OCF=90°,即OCCFCF是⊙O的切线.(2)在△AFC和△AEC中,∴△AFC≌△AECSAFC=SAECAB是⊙O的直径,CDABCE=DESBCD=2SBCE∵∠BCE+∠CBA=90°,∠CAB+∠CBA=90°,∴∠BCE=∠CBA∵sin∠CAB=∴sin∠CAB=sin∠BCE=BE=AB=AE=====故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.5、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意α的取值范围为:(2)补全图形如下:(3)AE=AF+CE证明:在AE上截取AH=AF,由旋转可得:AB=AD∴∠D=∠ABF∵△ABC为等边三角形,AB=AC,∠BAC=ACB=60°,AD=AC∵∠DAF=∠CAH∴△AFD≌△AHC∴∠AFD=∠AHC,∠D=∠ACH∴∠AFB=∠CHE∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCECE=HEAE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。

    数学九年级下册第24章 圆综合与测试复习练习题:

    这是一份数学九年级下册第24章 圆综合与测试复习练习题,共36页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map