北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题
展开
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共18页。试卷主要包含了一组数据中的中位数等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列做法正确的是( )A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度2、一组数据分别为:、、、、、,则这组数据的中位数是( )A. B. C. D.3、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.成绩/分919293949596979899100人数■■1235681012下列关于成的统计量中、与被遮盖的数据无关的是( )A.平均数 B.中位数C.中位数、众数 D.平均数、众数4、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )A.中位数 B.方差 C.平均数 D.众数5、一组数据中的中位数( )A.只有1个 B.有2个 C.没有 D.不确定6、下列采用的调查方式中,不合适的是 A.了解一批灯泡的使用寿命,采用普查B.了解神舟十二号零部件的质量情况,采用普查C.了解单县中学生睡眠时间,采用抽样调查D.了解中央电视台《开学第一课》的收视率,采用抽样调查7、一组数据2,9,5,5,8,5,8的中位数是( )A.2 B.5 C.8 D.98、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个.①这种调查采用了抽样调查的方式,②7万名考生是总体,③1000名考生是总体的一个样本,④每名考生的数学成绩是个体.A.2 B.3 C.4 D.09、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的( )A.平均数 B.加权平均数 C.众数 D.中位数10、某校人工智能科普社团有12名成员,成员的年龄情况统计如下:年龄(岁)1213141516人数(人)14322则这12名成员的平均年龄是( )A.13岁 B.14岁 C.15岁 D.16岁第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:分数段(分)61-7071-8081-9091-100人数(人)丄正上正一止(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.2、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:测试项目测试成绩甲乙面试9095综合知识测试8580根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.3、若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则_______叫做这n个数的加权平均数.4、一组数据:3、4、4、5、5、6、8,这组数据的中位数是 _____.5、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.三、解答题(5小题,每小题10分,共计50分)1、14,5,10,3,6的中位数是什么?2、小明调查了班级中20名同学某月的家庭用电量,结果如图所示.若把每组中各个用电量用这组数据的中间值代替(如30~40kW·h的中间值为35kW·h),则这20名同学家这个月的平均用电量是多少?3、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试.他们的各项成绩(百分制)如下:应试者听说读写甲85837875乙73808582(1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?4、为了了解秦兵马俑的身高状况.某考古队随机调查了36尊秦兵马俑,它们的高度(单住:cm)如下:172,178,181,184,184,187,187,190,190,175,181,181,184,184,187,187,190,193,178,181,181,184,187,187,187,190,193,178,181,184,184,187,187,190,190,196(1)这36尊秦兵马俑高度的平均数、中位数和众数分别是多少?(2)你能据此估计出秦兵马俑的平均高度吗?5、某调查小组采用简单随机抽样方法,对我校部分学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量为______;中位数为______.(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全条形统计图;(3)请估计我校学生一天中阳光体育运动的平均时间. ---------参考答案-----------一、单选题1、D【解析】【分析】根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.【详解】解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.故选:D【点睛】本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.2、D【解析】【分析】将数据排序,进而根据中位数的定义,可得答案.【详解】解:数据、、、、、从小到大排列后可得:、、、、、,排在中间的两个数是79,81,所以,其中位数为,故选:D.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、C【解析】【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.【点睛】本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.4、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.5、A【解析】【分析】根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.【详解】解:一组数据中的中位数只有一个;故选A.【点睛】本题主要考查中位数,熟练掌握中位数的求法是解题的关键.6、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【解析】【分析】先将数据按从小到大排列,取中间位置的数,即为中位数.【详解】解:将改组数据从小到大排列得:2,5,5,5,8,8,9,中间位置的数为:5,所以中位数为5.故选:B.【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.8、A【解析】【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.【详解】解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;②7万名考生的数学成绩是总体,故说法错误;③1000名考生的数学成绩是总体的一个样本,故说法错误;④每名考生的数学成绩是个体,故说法正确.综上,正确的是①④,共2个,故选:A.【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考察的事物.9、D【解析】【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.10、B【解析】【分析】根据平均数公式计算.【详解】解: (岁),故选:B.【点睛】此题考查平均数的计算公式,熟记计算公式是解题的关键.二、填空题1、 20 20%【解析】【分析】(1)观察表格,求各段的人数的和即可;(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.【详解】(1)参加这次演讲比赛的人数:2+8+6+4=20(人);(2)成绩在91~100分的同学为优胜者,优胜率为:.故答案为:20,20%.【点睛】本题考查了统计表,读懂统计表中的信息是解题的关键.2、乙【解析】【分析】分别求出两人的成绩的加权平均数,即可求解.【详解】解:甲候选人的最终成绩为: ,乙候选人的最终成绩为: ,∵ ,∴乙将被录取.故答案为:乙【点睛】本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.3、【解析】【分析】根据加权平均数的计算方法求解即可得.【详解】解:根据题意可得:加权平均数为:,故答案为:.【点睛】题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.4、5【解析】【分析】根据中位数的定义:将一组数据按从大到小(或从小到大)的顺序进行排列,处在中间的数或者中间两个数的平均数称为这组数据的中位数,据此进行解答即可.【详解】解:把这组数据从小到大排列:3、4、4、5、5、6、8,最中间的数是5,则这组数据的中位数是5.故答案为:5.【点睛】本题考查了中位数的定义,熟记定义是解本题的关键.5、 折线 扇形【解析】【分析】根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.【详解】解:根据统计图的特点可知:要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.故答案为:折线,扇形.【点睛】此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.三、解答题1、6【解析】【分析】把这组数据按从小到大的顺序排列,位于最中间的一个数为中位数.【详解】解:将这组数据从小到大排列为:3,5,6,10,14,处在中间位置的数为6,因此中位数是6,答:14,5,10,3,6的中位数是6.【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而做错,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、56.5 kW·h【解析】【分析】根据统计图可得出每组对应的数量,然后求出总用电量除以总户数即可.【详解】解:根据图象可得:30~40kW·h有2户;40~50kW·h有3户;50~60kW·h有8户;60~70kW·h有4户;70~80kW·h有3户;平均用电量是:(kW·h),答:这20名同学家这个月的平均用电量是56.5 kW·h.【点睛】题目主要考查从统计图中分析数据的集中趋势、求平均数,理解题意及运用算数平均数的计算方法是解题关键.3、(1)从成绩看,应该录取甲;(2)从成绩看,应该录取乙.【解析】【分析】利用加权平均数的计算公式计算即可.【详解】解:(1)听、说、读、写的成绩按的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照的比确定,则甲的平均成绩为:(分).乙的平均成绩为:(分).显然乙的成绩比甲高,所以从成绩看,应该录取乙.【点睛】本题考查了加权平均数的应用,熟练掌握加权平均数的计算公式是解题的关键.4、(1)这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;(2)一般而言,可以估计秦兵马俑的平均高度为185cm左右【解析】【分析】(1)根据加权平均数的定义求解平均数;把给出的此组数据中的数按从小到大(或从大到小)的顺序排列,处于最中间的两个数的平均数就是此组数据的中位数;这些数据中出现次数最多的那个数就是此组数据的众数;(2)根据平均数回答即可.【详解】解:(1)(172+175+178×3+181×6+184×7+187×9+190×6+193×2+196)÷36=6660÷36=185(cm),∴平均数为185cm;从小到大的顺序排列为:172,175,178,178,178,181,181,181,181,181,181,184,184,184,184,184,184,184,187,187,187,187,187,187,187,187,187,190,190,190,190,190,190,193,193,196,∴中位数为:(184+187)÷2=185.5(cm);∵此组数据中出现次数最多的是187,∴所以此组数据众数是187(cm),答:这36尊兵马俑高度的平均数是185cm,中位数是185.5cm,众数是187cm;(2)∵这36尊兵马俑高度的平均数是185cm,∴一般而言,可以估计秦兵马俑的平均高度为185cm左右.【点睛】此题主要考查了求平均数、中位数、众数的方法的运用,熟练掌握平均数、中位数和众数的定义是解题的关键.5、(1)500;1;(2)120;图见解析;(3)1.18小时.【解析】【分析】(1)利用0.5小时的人数为100人,所占比例为20%,即可求出样本容量;(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,100÷20%=500,∴本次调查共抽样了500名学生; ∴第250名学生的运动时间为1小时,第251名学生的运动时间为1小时,∴中位数=;(2)1.5小时的人数为:500×24%=120(人)故答案为:120,如图所示:(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1.18小时.【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试达标测试,共19页。试卷主要包含了下列调查中,最适合采用全面调查,下列调查中,适合用普查方式的是,以下调查中,适宜全面调查的是,下列问题不适合用全面调查的是等内容,欢迎下载使用。
这是一份初中数学第九章 数据的收集与表示综合与测试课堂检测,共19页。试卷主要包含了一组数据分别为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了下列问题不适合用全面调查的是等内容,欢迎下载使用。