北京课改版七年级下册第六章 整式的运算综合与测试练习题
展开
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了下列计算正确的是,已知,已知,,则,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )A. B. C. D.2、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.5993、观察图中点阵,发现第①个图中有5个点,第②个图中有12个点,第③个图中有22个点,第④个图中有35个点,…,按此规律,则第⑩个图有( )个点A.145 B.176 C.187 D.2104、下列计算正确的是( )A.a+3a=4a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a75、小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A.(2a+b2) B.(a+2b) C.(3ab+2b2) D.(2ab+b2)6、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.67、已知,,则( )A.2 B.3 C.9 D.188、下列运算正确的是( )A. B. C. D.9、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.1110、下列表述正确的是( )A.单项式ab的系数是0,次数是2 B.的系数是,次数是3C.是一次二项式 D.的项是,3a,1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图中的四边形均为长方形,根据图形,写出一个正确的等式:____________.2、单项式-的系数是__________.3、一张长方形桌子可坐6人,按下图方式将桌子拼在一起张桌子拼在一起可坐8人,n张桌子拼在一起可坐______人.(用含n的式子表示)4、多项式的次数是____次,它的常数项是____.5、单项式的系数是_______.三、解答题(5小题,每小题10分,共计50分)1、已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1(1)求A﹣2B的值;(2)a=﹣3,b=时,求A﹣2B的值.2、先化简,再求值:2(﹣4x2+2x﹣8)﹣(4x﹣1),其中x=2.3、先化简,再求值:,其中.4、完全平方公式:适当的变形,可以解决很多的数学问题.例如:若,求的值.解:因为所以所以得.根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.5、如图所示,用三种大小不同的5个正方形和一个长方形(阴影部分)拼成长方形ABCD,其中厘米,最小的正方形的边长为x厘米.(1)________厘米,________厘米(用含x的整式分别表示);(2)求长方形ABCD的周长(用含x的整式表示),当厘米时,求其值. ---------参考答案-----------一、单选题1、A【分析】根据整式的加减运算、同底数幂的乘除运算,幂的乘方运算,求解即可.【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A【点睛】此题考查了整式的加减运算、同底数幂的乘除运算,幂的乘方运算,解题的关键是掌握整式的有关运算法则.2、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.3、B【分析】根据已知图形得第个图形中黑点数为,据此求解可得.【详解】解:图①中黑点的个数,图②中黑点的个数,图③中黑点的个数,第个图形中黑点的个数为,第⑩个图形中黑点的个数为.故选:B.【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出第个图形中黑点的个数为.4、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.【详解】解:A选项,原式=4a,故该选项符合题意;B选项,原式=b6,故该选项不符合题意;C选项,原式=a2,故该选项不符合题意;D选项,原式=a10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.5、A【分析】根据多项式除单项式的运算法则计算即可.【详解】∵(4a2b+2ab3)÷2ab=2a+b2,∴被墨汁遮住的一项是2a+b2.故选:A.【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.6、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.7、D【分析】根据同底数幂的乘法逆运算进行整理,再代入求值即可.【详解】解:∵,,∴.故选:D.【点睛】本题主要考查求代数式的值,同底数幂乘法的逆用,解题的关键是把式子整理成整体代入的形式.8、B【分析】根据同底数幂的乘除法,积的乘方,幂的乘方的计算法则求解即可.【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B.【点睛】本题主要考查了同底数幂的乘除法,积的乘方,幂的乘方,熟知相关计算法则是解题的关键.9、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.10、C【分析】直接利用单项式的次数与系数以及多项式的特点分别分析得出答案.【详解】解:A.单项式ab的系数是1,次数是2,故此选项不合题意;B.的系数是,次数是5,故此选项不合题意;C.x−1是一次二项式,故此选项符合题意;D.的项是,3a,−1,故此选项不合题意;故选:C.【点睛】此题主要考查了多项式和单项式,正确掌握单项式的次数确定方法是解题关键.二、填空题1、 (x+2y)(x+y)=【分析】根据图形,从两个角度计算长方形面积即可求出答案.【详解】解:大长方形的面积=(x+2y)(x+y),大长方形的面积= ,∴(x+2y)(x+y)=,故答案为:(x+2y)(x+y)=.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则.2、【分析】根据单项式中系数的概念求解即可.【详解】解:单项式-的系数是:.故答案为:.【点睛】此题考查了单项式中系数的概念,解题的关键是熟练掌握单项式中系数的概念.单项式:由数和字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.3、 (2n+4)n)【分析】根据图形得出2张桌子,3张桌子拼在一起可坐的人数,然后得出每多一张桌子可多坐2人的规律,进而求出n张桌子拼在一起可坐的人数.【详解】解:由图可知,1张长方形桌子可坐6人,6=2×1+4,2张桌子拼在一起可坐8人,8=2×2+4,3张桌子拼在一起可坐10人,10=2×3+4,…依此类推,每多一张桌子可多坐2人,∴n张桌子拼在一起可坐(2n+4)人.故答案为 (2n+4).【点睛】考查图形的变化规律,根据图形,观察得出每多一张桌子可多坐2人的规律,求出n张桌子拼在一起可坐人数的表达式是解题的关键.4、3 -5 【分析】根据多项式中常数项(多项式中,不含字母的项即为常数项)和次数(多项式中最高次项的次数)的定义求解即可.【详解】解:中,次数是3次,常数项为-5,故答案为:3;-5.【点睛】题目主要考查多项式中常数项与次数的定义,理解这两个定义是解题关键.5、【分析】单项式的系数指的是单项式中的数字因式,观察所给单项式,进而得出系数.【详解】解:中为数字因式即为单项式的系数故答案为:.【点睛】本题考察了单项式的系数.解题的关键在于区分单项式中的数字因式与字母因式.三、解答题1、(1)ab﹣2a+1;(2)5【解析】【分析】(1)将已知整式代入,然后去括号,合并同类项进行化简;(2)将已知字母的值代入(1)中的化简结果,从而求值.【详解】解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,∴A﹣2B=2a2+3ab﹣2a﹣1-2(a2+ab﹣1)=2a2+3ab﹣2a﹣1﹣2a2-2ab+2=ab﹣2a+1;(2)当a=﹣3,b=时,原式=.【点睛】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.2、﹣8x2﹣15,-47【解析】【分析】先去括号合并同类项,再把x=2代入计算.【详解】解:2(﹣4x2+2x﹣8)﹣(4x﹣1)=﹣8x2+4x﹣16﹣4x+1=﹣8x2﹣15,∵x=2,∴原式=﹣8×22﹣15=﹣32﹣15=﹣47.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算.3、,【解析】【分析】先去括号,然后合并同类项,最后将代入求解即可.【详解】解:,当时,原式.【点睛】此题考查了整式的混合运算化简求值问题,熟练掌握去括号、合并同类项法则是解本题的关键.4、(1);(2)17;(3)【解析】【分析】(1)仿照题意,利用完全平方公式求值即可;(2)先求出,然后仿照题意利用完全平方公式求解即可;(3)设AC的长为a,BC的长为b,则AB=AC+BC=a+b=6,,由,得到,由此仿照题意,利用完全平方公式求解即可.【详解】解:(1)∵,,∴,∴,∴,∴;(2)∵,,∴,,∴,故答案为:17;(3)设AC的长为a,BC的长为b,∴AB=AC+BC=a+b=6,∴∵,∴,∴,∴,又∵四边形BCFG是正方形,∴CF=CB,∴.【点睛】本题主要考查了完全平方公式的变形求值,解题的关键在于能够准确读懂题意.5、(1),;(2),158cm.【解析】【分析】(1)根据图形可得结合线段的和差、正方形的性质即可解答;(2)分别表示出AB和BC,然后再表示出周长,最后将x=9代入计算.【详解】解:(1)由图可知:FG=厘米,DG=厘米;故答案是:,;(2)长方形的宽为:,长为:,则长方形ABCD的周长为:, 当时,.【点睛】本题主要考查了列代数式和代数式求值,理解各个图形的边长之间的数量关系是解答本题的关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共22页。试卷主要包含了一同学做一道数学题,下列各式中,计算正确的是,下列计算正确的是,下列等式成立的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习,共20页。试卷主要包含了下列运算正确的是,下列说法正确的是,下列去括号正确的是.,下列等式成立的是等内容,欢迎下载使用。