初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共16页。试卷主要包含了下列数字的排列,下列计算正确的是,观察下列各式等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、化简x-2(x+1)的结果是( )A.-x-2 B.-x+2 C.x+2 D.x-22、下列运算正确的是( )A. B. C. D.3、下列运算正确的是( )A.3a+2a=5a2 B.﹣8a2÷4a=2aC.4a2•3a3=12a6 D.(﹣2a2)3=﹣8a64、如图所示,有一些点组成的三角形的图形,每条“边”(包括两个顶点)有n()个点,每个图形总的点数可以表示为s,当时,s的值是( )A.36 B.33 C.30 D.275、下列数字的排列:2,12,36,80,那么下一个数是( )A.100 B.125 C.150 D.1756、下列计算正确的是( )A.2a+3b=5ab B.x8÷x2=x6 C.(ab3)2=ab6 D.(x+2)2=x2+47、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.5998、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201129、对于任意实数m,n,如果满足,那么称这一对数m,n为“完美数对”,记为(m,n).若(a,b)是“完美数对”,则3(3a+b)-(a+b-2)的值为 ( )A.﹣2 B.0 C.2 D.310、下列运算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于、的多项式中不含项,则______.2、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
3、、两个数在数轴上的位置如图所示,则化简的结果是________.4、计算:_______5、计算:______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中x=2,.2、先化简,再求值:(x﹣2y)2﹣(x﹣2y)(2x+y)+(x﹣y)(x+y),其中x=5y.3、观察下面的变形规律:=;=;=……解答下面各题:(1)若n为正整数,请你猜想=_________;(2)求和:+++…+.4、已知m=1,n=-1,求代数式3m2n+mn-2(m2n-mn)的值.5、先化简,再求值:,其中,b=-3. ---------参考答案-----------一、单选题1、A【分析】去括号合并同类项即可.【详解】解:x-2(x+1)=x-2x-2=-x-2.故选A.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.2、D【分析】根据整式的运算法则逐项检验即可.【详解】解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;B、,原计算错误,故该选项不符合题意;C、,原计算错误,故该选项不符合题意;D、,正确,故该选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.3、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可.【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D.【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键.4、C【分析】当时,,当时,,当时,,当时,,可以推出当时,,由此求解即可.【详解】解:当时,,当时,,当时,,当时,,∴当时,,∴当时,,故选C.【点睛】本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.5、C【分析】由2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,可得第n个数为n3+n2,由此求解即可.【详解】解:∵2=1+1=13+12,12=8+4=23+22,36=27+9=33+32,80=64+16=43+42,∴下一个数是53+52=125+25=150.(第n个数为n3+n2).故选C.【点睛】本题主要考查了数字类的规律探索,根据题意找到规律是解题的关键.6、B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误; x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.7、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.8、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.9、C【分析】先根据“完美数对”的定义,从而可得,再去括号,计算整式的加减,然后将整体代入即可得.【详解】解:由题意得:,即,则,,,,,故选:C.【点睛】本题考查了整式加减中的化简求值,掌握理解“完美数对”的定义是解题关键.10、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.二、填空题1、3【分析】先合并关于xy的同类项,再令项的系数等于零求解.【详解】解:=,∵多项式中不含项,∴-2k+6=0,∴k=3.故答案为:3.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.2、8【分析】设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.【详解】解:设长方形的长为a,宽为b, 由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①, 由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②, 由①②得,2ab+34=50, 所以ab=8, 即长方形的面积为8, 故答案为:8.【点睛】本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.3、a【分析】由数轴得,,,去绝对值有,从而得出结果.【详解】解:,故答案为:.【点睛】本题考查了数轴,去绝对值.解题的关键与难点在于判断绝对值里数值的正负.4、【分析】先把原式化为,再计算乘方运算,再算乘法运算,即可得到答案.【详解】解: 故答案为:【点睛】本题考查的是同底数幂的乘法的逆运算,积的乘方运算的逆运算,掌握“”是解本题的关键.5、【分析】根据单项式乘单项式运算法则、同底数幂的乘法法则计算即可.【详解】解:=,故答案为:.【点睛】本题考查整式的乘法、同底数幂的乘法,熟练掌握运算法则是解答的关键.三、解答题1、3x﹣2y,.【解析】【分析】原式去括号,然后根据整式的加减计算法则合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=2x﹣4y﹣x+2y+2x=3x﹣2y,当x=2,时,原式=.【点睛】本题主要考查了整式的化简求值,去括号,熟知相关计算法则是解题的关键.2、,0【解析】【分析】先计算完全平方公式、平方差公式、整式的乘法,再计算整式的加减法,然后将代入计算即可得.【详解】解:原式,,,将代入得:原式.【点睛】本题考查了整式的化简求值,熟练掌握乘法公式和运算法则是解题关键.3、(1)(2)【解析】【分析】(1)根据变形规律写出减法算式即可.(2)把每一个乘法算式都裂项变成材料中的减法,再相互抵消达到简化计算的效果.【详解】(1)故答案为:(2)原式===【点睛】本题考查裂项相消法求式子的值,掌握相邻两个分数乘法转换成减法是本题关键.4、-4【解析】【分析】根据题意先运用整式的加减运算对代数式化简,进而代入m=1,n=-1进行计算即可.【详解】解:3m2n+mn-2(m2n-mn)将m=1,n=-1,代入可得.【点睛】本题考查代数式化简求值,熟练掌握整式的加减运算与合并同类项的方法是解题的关键.5、,.【解析】【分析】原式去括号合并得到最简结果,把、的值代入计算即可求值.【详解】解:,,,∵当,b=-3时,原式.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共16页。试卷主要包含了下列式子正确的,不一定相等的一组是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共16页。试卷主要包含了下列式子,下列运算正确的是,下列计算正确的是,若,,求的值是,下列说法正确的是,下列判断正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试达标测试,共15页。试卷主要包含了下列运算正确的是,下列结论中,正确的是,下列各式中,计算结果为的是,下列数字的排列,单项式的系数和次数分别是,多项式+1的次数是等内容,欢迎下载使用。