初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共17页。试卷主要包含了下列运算正确的是,下列运算不正确的是,下列各式中,计算结果为的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列叙述中,正确的是( )A.单项式的系数是B.a,π,52都是单项式C.多项式3a3b+2a2﹣1的常数项是1D.是单项式2、化简x-2(x+1)的结果是( )A.-x-2 B.-x+2 C.x+2 D.x-23、下列计算中,正确的是( )A. B.C. D.4、下列运算正确的是( )A. B.C. D.5、下列关于单项式2x2y的说法正确的是( )A.系数是1,次数是2 B.系数是2,次数是2C.系数是1,次数是3 D.系数是2,次数是36、 “数形结合”是一种重要的数学思维,观察下面的图形和算式: 解答下列问题:请用上面得到的规律计算:21+23+25+27…+101=( )A. B. C. D.7、下列运算不正确的是( )A. B. C. D.8、下列各式中,能用平方差公式计算的是( )A.(a+b)(﹣a﹣b) B.(a+b)(a﹣b)C.(a+b)(a﹣d) D.(a+b)(2a﹣b)9、下列各式中,计算结果为的是( )A. B.C. D.10、多项式+1的次数是( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、观察下面三行数:﹣2、4、﹣8、16、﹣32、64…①﹣5、1、﹣11、13、﹣35、61…②﹣、1、﹣2、4、﹣8、16…③取每行数的第10个数,则这三个数的和为________.2、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.3、若a与b互为相反数,c与d互为倒数,则2a+2b+5cd=_____.4、多项式的次数是_____.5、单项式的系数是____________三、解答题(5小题,每小题10分,共计50分)1、(1)已知多项式的值与字母x的取值无关,求多项式的值.(2)当时,多项式的值为5,当时,多项式的值是多少?2、计算下列各题(1) (2)3、如果A、B两点在数轴上分别表示有理数a、b,那么它们之间的距离AB=|a﹣b|.如图1,已知数轴上两点A、B对应的数分别为﹣3和8,数轴上另有一个点P对应的数为x.(1)点P、B之间的距离PB= .(2)若点P在A、B之间,则|x+3|+|x﹣8|= .(3)如图2,若点P在点B右侧,且x=12,取BP的中点M,试求2AM﹣AP的值.4、已知ax•ay=a5,ax÷ay=a.(1)求x+y和x﹣y的值;(2)运用完全平方公式,求x2+y2的值.5、化简.(1)2m﹣3n﹣5n﹣7m;(2)4(x2﹣xy+6)﹣3(2x2﹣xy). ---------参考答案-----------一、单选题1、B【分析】根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.【详解】解:A.单项式的系数是,故本选项不符合题意;B.a,π,52都是单项式,故本选项符合题意;C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;D.是多项式,不是单项式,故本选项不符合题意;故选:B.【点睛】本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.2、A【分析】去括号合并同类项即可.【详解】解:x-2(x+1)=x-2x-2=-x-2.故选A.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.3、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.4、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.5、D【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【详解】解:单项式2x2y的系数为2,次数为3.故选:D.【点睛】本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键.6、B【分析】由题意根据图形和算式的变化发现规律,进而根据得到的规律进行计算即可.【详解】解:观察以下算式:
1=1=12
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
发现规律:
1+3+5+7+9+…+19=100=102.
∴1+3+5+7+9+…+19+21+23+25+27+…+101=512
∴21+23+25+27+…+101=512-102=2501.
故选:B.【点睛】本题考查规律型-图形的变化类、有理数的混合运算,解决本题的关键是根据图形和算式的变化寻找规律,并运用规律.7、C【分析】根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可直接进行排除选项.【详解】解:A、,原选项正确,故不符合题意;B、,原选项正确,故不符合题意;C、与不是同类项,不能合并,原选项错误,故符合题意;D、,原选项正确,故不符合题意;故选C.【点睛】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项是解题的关键.8、B【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2对各选项分别进行判断.【详解】解:A、(a+b)(﹣a﹣b)=﹣(a+b)(a+b)两项都相同,不能用平方差公式计算.故本选项不符合题意;B、(a+b)(a﹣b)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(a﹣d)中存在相同项,没有相反项,不能用平方差公式计算.故本选项不符合题意;D、(a+b)(2a﹣b)中存在相反项,没有相同项,不能用平方差公式计算.故本选项不符合题意;故选:B.【点睛】本题考查了平方差公式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9、B【分析】根据幂的运算法则即可求解.【详解】A. =,故错误; B. =,正确;C. 不能计算,故错误; D. =,故错误;故选B.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.10、C【分析】根据多项式的次数的定义(在多项式中,次数最高的项的次数叫做这个多项式的次数)即可得.【详解】解:2a2b−ab2−ab+1∵2a2b的次数是2+1=3,ab2的次数是1+2=3,ab的次数是1+1=2,∴这个多项式的次数是3,故选:C.【点睛】本题考查了多项式的次数,熟记定义是解题关键.二、填空题1、【分析】观察第①行数排列的规律,发现第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,进而可得每行数的第个数的和.【详解】解:根据三行数的规律可知:第①行第个数是,第②行数是第①行数减去,第③行数是第①行数乘以,则每行数的第个数的和为:===,故答案为:.【点睛】本题考查了数字的变化规律,根据题意得出每列数字的变化规律是解本题的关键.2、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.3、5【分析】根据互为相反数的和为0,互为倒数的积为1,代入计算即可.【详解】解:∵a与b互为相反数,c与d互为倒数,∴,,2a+2b+5cd=;故答案为:5.【点睛】本题考查了相反数和倒数,有理数的运算,解题关键是明确互为相反数的和为0,互为倒数的积为1.4、5【分析】根据多项式次数的概念来解答.【详解】解:代数式次数是五次,故答案为:5.【点睛】本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.5、- 【分析】根据单项式的次数的定义(单项式中的数字因数是单项式的系数)解决此题.【详解】解:单项式的系数是,
故答案为:.【点睛】本题主要考查单项式的系数,熟练掌握单项式的系数的定义是解决本题的关键.三、解答题1、(1)-9;(2)-1【解析】【分析】(1)利用多项式的定义得出m,n的值,进而代入求出即可;(2)把代入得,再将代入求出即可.【详解】①,由题意可得,,所以,,将去括号,得,合并同类项得,将,代入,得,所以代数式的值为.②解:把代入得,当时,.【点睛】此题主要考查了整式的加减,多项式的定义,得出关于x系数之间关系是解题关键.2、(1);(2).【解析】【分析】(1)先进行积的乘方计算,再计算乘法即可;(2)先分别利用完全平方公式公式和平方差公式计算,在进行合并同类项即可.【详解】解:(1);(2).【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3、(1);(2);(3)【解析】【分析】(1)根据题意直接写出数轴上两点的距离;(2)根据点的值可得,进而化简绝对值,根据整式的加减进行计算即可;(3)根据题意求得点表示的数,进而根据两点距离进行计算求解即可【详解】解:(1) B对应的数分别为8,点P对应的数为x. PB=故答案为:(2)点P在A、B之间,,|x+3|+|x﹣8|=故答案为:11(3)如图, x=12,是的中点表示的点为【点睛】本题考查了数轴上两点的距离,用数轴上的点表示有理数,化简绝对值,整式的加减,掌握两点的距离公式是解题的关键.4、(1)x+y=5,x﹣y=1;(2)13【解析】【分析】(1)根据同底数幂的乘除法法则解答即可;(2)根据完全平方公式解答即可.【详解】解:(1)因为ax•ay=a5,ax÷ay=a,所以ax+y=a5,ax﹣y=a,所以x+y=5,x﹣y=1;(2)因为x+y=5,x﹣y=1,所以(x+y)2=25,(x﹣y)2=1,所以x2+2xy+y2=25①,x2﹣2xy+y2=1②,①+②,得2x2+2y2=26,所以x2+y2=13.【点睛】本题考查了同底数幂的乘除法,完全平方公式.解题的关键是掌握同底数幂的乘除法法则,以及完全平方公式:(a±b)2=a2±2ab+b2.5、(1)﹣5m﹣8n;(2)﹣2x2﹣xy+24【解析】【分析】(1)合并同类项进行化简;(2)原式去括号,合并同类项进行化简.【详解】解:(1)原式=(2﹣7)m+(﹣3﹣5)n=﹣5m﹣8n;(2)原式=4x2﹣4xy+24﹣6x2+3xy=﹣2x2﹣xy+24.【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共22页。试卷主要包含了一同学做一道数学题,下列各式中,计算正确的是,下列计算正确的是,下列等式成立的是,下列运算正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习,共20页。试卷主要包含了下列运算正确的是,下列说法正确的是,下列去括号正确的是.,下列等式成立的是等内容,欢迎下载使用。