初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )
A.1个B.2个C.3个D.4个
2、数据2,5,5,7,x,3的平均数是4,则中位数是( )
A.6B.5C.4.5D.4
3、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89B.90C.91D.92
4、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1B.2C.3D.4
5、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2B.3C.4D.5
6、在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8,则小丽该周每天的平均睡眠时间是( )
A.7小时B.7.5小时C.8小时D.9小时
7、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数B.方差C.平均数D.众数
8、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是( )
A.200名学生的视力是总体的一个样本B.200名学生是总体
C.200名学生是总体的一个个体D.样本容量是1200名
9、下列调查中,调查方式选择合理的是 ( )
A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式
B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式
C.为了了解天门山景区的每天的游客客流量,选择全面调查方式
D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式
10、某校男子足球队的年龄分布如图条形图所示,则这些队员年龄的众数是( )
A.8B.13C.14D.15
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
2、科学技术的发展离不开大量的研究与试验,右面的统计图反映了某市2013~2017年研究与试验经费支出及增长速度的情况.根据统计图提供的信息,有以下三个推断:
①2013~2017年,某市研究与试验经费支出连年增高;
②2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2017年;
③与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降.其中正确的有_______________.
3、某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如表:
根据实际需要学校将三项能力测试得分按6:2:2的比例确定每人的成绩,将被录用的是________
4、若一组数据3,x,4,2的众数和中位数相等,则x的值为________.
5、为推荐一项作品参加“科技创新比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:
如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是_________.
三、解答题(5小题,每小题10分,共计50分)
1、某校春季运动会计划从七年级三个班中评选一个精神文明队,评比内容包括:“开幕式得分”,“纪律卫生”和“投稿及播稿情况”三项(得分均为整数分),三个班的各项得分(不完整)如图所示.
(1)“开幕式”三个班得分的中位数是 ;“纪律卫生”三个班得分的众数是 ;
(2)根据大会组委会的规定:“开幕式”,“纪律卫生”,“投稿及播稿情况”三项按4:4:2的比例确定总成绩,总成绩高的当选精神文明队,已知七年级一班的总成绩为79分.
①请计算七年级二班的总成绩;
②若七年级三班当选精神文明队,请求出七年级三班在“投稿及播稿情况”方面的最少得分?
2、在学校内随机调查20位男同学所穿运动鞋的尺码,计算它们的平均数.
3、一个中学礼仪队的20名女队员的身高(单位:cm)如图所示,你能大致估计出队员的平均身高吗?能用一种简便的方法计算这些队员的平均身高吗?
4、深圳某中学全校学生参加了“庆祝中国共产党成立100周年”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:70分以下(不包括;;;,并绘制出不完整的统计图.
(1)被抽取的学生成绩在组的有______人,请补全条形统计图;
(2)被抽取的学生成绩在组的对应扇形圆心角的度数是______;
(3)若该中学全校共有2400人,则成绩在组的大约有多少人?
5、某公司员工的月工资统计如下:
求该公司员工月工资的平均数、中位数和众数.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
直接根据众数、中位数和平均数的定义求解即可得出答案.
【详解】
数据3出现了6次,次数最多,所以众数是3,故①正确;
这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;
平均数为,故③、④错误;
所以不正确的结论有②、③、④,
故选:C.
【点睛】
本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.
2、D
【解析】
【分析】
先计算出x的值,再根据中位数的定义解答.
【详解】
解:∵2,5,5,7,x,3的平均数是4,
∴,
∴x=2,
数据有小到大排列为2,2,3,5,5,7,
∴中位数是,
故选:D.
【点睛】
此题考查已知平均数求某一数据,求中位数,根据平均数的公式求出未知数的值是解题的关键.
3、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
4、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
5、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
6、C
【解析】
【分析】
根据平均数的定义列式计算即可求解.
【详解】
解:(8+9+7+9+7+8+8)÷7=8(小时).
故小丽该周平均每天的睡眠时间为8小时.
故选:C.
【点睛】
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
7、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
8、A
【解析】
【分析】
根据总体,样本,个体,样本容量的定义,即可得出结论.
【详解】
解:A.200名学生的视力是总体的一个样本,故本选项正确;
B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;
C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;
D.样本容量是1200,故本选项错误.
故选:A.
【点睛】
本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.
9、A
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.
【详解】
A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;
B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;
C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;
D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、C
【解析】
【分析】
根据众数的定义:一组数据中出现次数最多的那个数,称为这组数据的众数,据此结合条形图可得答案.
【详解】
解:由条形统计图知14岁出现的次数最多,
所以这些队员年龄的众数为14岁,
故选C.
【点睛】
本题考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义.
二、填空题
1、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、①③
【解析】
【分析】
根据统计图中2013~2017年,研究与试验经费支出的数据即可判断①;计算出2014~2017年每年的增长量即可判断②;根据统计图中的增长速度即可判断③.
【详解】
解:因为,
所以2013~2017年,某市研究与试验经费支出连年增高,①正确;
2014年比2013年实际增长量为(亿元),
2015年比2014年实际增长量为(亿元),
2016年比2015年实际增长量为(亿元),
2017年比2016年实际增长量为(亿元),
由此可知,2014~2017年,某市研究与试验经费支出较上一年实际增长最多的是2015年,则②错误;
因为115.2>100.6,
所以与2015年相比,2016年某市研究与试验经费支出的增长速度有所下降,③正确;
综上,正确的有①③,
故答案为:①③.
【点睛】
本题考查了统计图,读懂统计图是解题关键.
3、丙
【解析】
【分析】
根据加权平均数的定义求解即可,分别求得甲乙丙三人的平均成绩,进而即可判断,加权平均数计算公式为:,其中代表各数据的权.
【详解】
三项能力测试得分按6:2:2的比例,
三项能力的权分别为:0.6,0.2,0.2,
甲,
乙,
丙,
.
将被录用的是丙.
故答案为:丙.
【点睛】
本题考查了求加权平均数,掌握加权平均数的定义是解题的关键.
4、
【解析】
【分析】
由一组数据3,x,4,2有众数,可得或 或 再分类讨论即可得到答案.
【详解】
解: 一组数据3,x,4,2有众数,
或 或
当时,则数据为:
此时中位数为 众数为2,不合题意,舍去,
当时,则数据为:
此时中位数为 众数为3,符合题意,
当时,则数据为:
此时中位数为 众数为4,不符合题意,舍去,
综上:
故答案为:
【点睛】
本题考查的是中位数与众数的含义,有清晰的分类讨论思想是解题的关键.
5、乙
【解析】
【分析】
利用加权平均数计算总成绩,比较总成绩高低判断即可.
【详解】
解:根据题意,得:
甲:90×60%+90×40%=90;
乙:95×60%+90×40%=93;
丙:90×60%+95×40%=92;
丁:90×60%+85×40%=88;
∵乙总成绩>丙总成绩>甲总成绩>丁总成绩.
故答案为乙.
【点睛】
本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.
三、解答题
1、(1)85;85;(2)①七年级二班的总成绩为80;②七年级三班在“投稿及播稿情况”方面的最少得分是51分.
【解析】
【分析】
(1)将三个班“开幕式”和“纪律卫生”列出来,从中找出中位数和众数即可;
(2)①利用加权平均数计算出七年级三班的得分即可;
②设七年级三班“投稿及播稿情况”的得分为x,因为三班的成绩要比二班的高,根据加权平均数计算与二班的成绩列出不等式求解即可.
【详解】
(1)“开幕式”三个班得分分别为:85,75,90,
故中位数为85;
“纪律卫生”三个班得分分别为:70,85,85,
故众数为85;
(2)①(分),
故七年级二班的总成绩为:80分;
②设七年级三班在“投稿及播稿情况”方面的得分为x分,
若七年级三班当选精神文明对,则七年级三班的总成绩应比七年级二班精神文明成绩要高,
则,
解得,
∵x为整数,
∴x最低为51,
∴七年级三班在“投稿及播稿情况”方面的最少得分为51分.
【点睛】
本题考查了中位数、众数和加权平均数的计算,解题的关键是对定义的理解.
2、39.1
【解析】
【分析】
根据加权平均数的定义求解分析.
【详解】
解:在学校内随机调查20位男同学所穿运动鞋的尺码,结果如图所示:
则平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
【点睛】
本题考查加权平均数,加权平均数是指在一组数据中所有数据之和再除以数据的个数,掌握算数平均数是解题关键.
3、170cm,见解析
【解析】
【分析】
根据图中点的大致分布发现在170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同即可大致估计出队员的平均身高;将图中数据汇总至表格中,再根据求平均数的方法求解即可.
【详解】
解:队员的平均身高大致为170cm,因为170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同;
根据统计图得到20名女队员的身高为:
故队员的平均身高为:
cm.
【点睛】
本题考查了平均数的求法,解题的关键是能从图中获取相应的数据,再进行求解.
4、(1)24,图见解析;(2)36°;(3)480人
【解析】
【分析】
(1)由D组人数及其所占百分比求出被调查总人数,总人数减去A、B、D组人数即可求出C组人数,从而补全图形;
(2)用360°乘以A组人数所占比例即可;
(3)用总人数乘以样本中B组人数所占比例即可.
【详解】
解:(1)∵被抽取的总人数为18÷30%=60(人),
∴C组人数为60-(6+12+18)=24(人),
补全图形如下:
故答案为:24
(2)被抽取的学生成绩在A组的对应扇形圆心角的度数为360°×=36°,
故答案为:36°;
(3)成绩在B组的大约有2400×=480(人).
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
5、平均数是2144元,中位数是1800元,众数是1800元
【解析】
【分析】
根据平均数、中位数和众数定义直接求解即可.
【详解】
解:平均数(元);
∵中位数是指一组数据从小到大排列后,正中间的数据,
∴由表格可知,该组数据共有50个,则应取第25个和26个数据的平均值,
从表格中可知,从小到大排列后,第25个和26个数据均为1800,
∴中位数(元);
∵众数是指一组数据中出现次数最多的数据,
∴由表格信息可知,1800出现次数最多为24次,
∴众数(元).
【点睛】
本题考查求一组数据的平均数,中位数和众数,理解它们的定义,掌握求解方法是解题关键.
测试项目
成绩
甲
乙
丙
教学能力
77
73
73
科研能力
70
71
65
组织能力
64
72
84
作品
评价指标
甲
乙
丙
丁
创新性
90
95
90
90
实用性
90
90
95
85
月工资/元
6000
5000
3000
2000
1800
1500
人数
1
2
5
12
24
6
身高/cm
165
167
168
169
170
171
172
173
174
人数
1
2
2
2
5
3
2
2
1
2021学年第九章 数据的收集与表示综合与测试同步练习题: 这是一份2021学年第九章 数据的收集与表示综合与测试同步练习题,共18页。试卷主要包含了下列做法正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
北京课改版七年级下册第九章 数据的收集与表示综合与测试课时作业: 这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课时作业,共18页。试卷主要包含了下列调查中,最适合全面调查等内容,欢迎下载使用。
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试练习,共17页。试卷主要包含了有一组数据等内容,欢迎下载使用。