初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共17页。试卷主要包含了一同学做一道数学题,下列计算中,正确的是,下面说法正确的是,下列运算正确的是,用“※”定义一种新运算等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.112、关于单项式﹣,下列说法中正确的是( )A.系数是﹣ B.次数是4 C.系数是﹣ D.次数是53、若x2+mxy+25y2是一个完全平方式,那么m的值是( )A.±10 B.-5 C.5 D.±54、一同学做一道数学题:“已知两个多项式,,其中,求”,这位同学却把看成,求出的结果是,那么多项式是( )A. B.C. D.5、下列计算中,正确的是( )A. B.C. D.6、下面说法正确的是( )A.倒数等于它本身的数是1B.是最大的负整数C.单项式的系数是,次数是2D.与是同类项7、下列运算正确的是( )A.(a2)3=a6 B.a2•a3=a6C.a7÷a=a7 D.(﹣2a2)3=8a68、用“※”定义一种新运算:对于任何有理数a和b,规定.如,则的值为( )A.-4 B.8 C.4 D.-89、1883年,康托尔构造了一个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为( )A. B. C. D.10、下列计算正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式的系数是_______,次数是______.2、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.3、观察下列单项式x,,,,,…,,,…,猜想第n个单项式是_______________.4、如图,长方形ABCD中,AB=2cm,AD=1cm,在直线DA上,将长方形ABCD向右无滑动的滚动下去,(如①为第1次、②为第2次、③为第3次……)则第2022此滚动后得到的长方形最右侧边与CD边的距离为____________cm.5、对a,b,c,d定义一种新运算:,如,计算_________.三、解答题(5小题,每小题10分,共计50分)1、先化简,在求值:其中,. 2、计算题:①(﹣18)﹣(+3)﹣(﹣6)+(﹣12);②;③;④﹣32﹣23﹣[(﹣9)3+93]+(﹣1)2017;⑤先化简,再求值(2x2﹣2y2)﹣3(x2y+x2)+3(x2y+y2),其中x=﹣1,y=2.3、先化简,再求值:,其中.4、先化简,再求值:,其中x=2,.5、计算:(1)(2) ---------参考答案-----------一、单选题1、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.2、C【分析】根据单项式的基本性质:单项式的次数(单项式中所以字母的指数的和)、系数(单项式中的数字因式)的定义解答即可.【详解】解:单项式的系数是,次数是.故选:C.【点睛】本题考查了单项式的次数和系数,深刻理解单项式的次数和系数的定义是解题关键.3、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.4、A【分析】由,,代入计算即可求出A的值.【详解】解:∵,由题意知:,则:A=,A=,=,故选:A【点睛】本题主要考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.5、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A. ,故选项A不正确; B. ,故选项B不正确;C. ,故选项C不正确;D. ,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.6、B【分析】选项A根据倒数的定义判断即可,倒数:乘积是1的两数互为倒数;选项B根据整数与负数的定义判断即可,整数包括正整数,零,负整数;选项C根据单项式的定义判断即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据同类项的定义判断即可,定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:.倒数等于它本身的数是,故本选项不合题意;.是最大的负整数,正确,故本选项符合题意;.单项式的系数是,次数是3,故本选项不合题意;.与所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不合题意;故选:.【点睛】本题考查了单项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.7、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.【详解】解:A、,原选项正确,故符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项错误,故不符合题意;故选A.【点睛】本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.8、A【分析】根据定义的新运算法则代入计算即可.【详解】解:,∴,故选:A.【点睛】题目主要考查计算代数式的值,理解题目中心定义的运算是解题关键.9、C【分析】根据题意具体表示前几个式子,然后总结归纳规律,即可得到答案.【详解】解:由题意得:第一阶段时,余下的线段的长度之和为, 第二阶段时,余下的线段的长度之和为, 第三阶段时,余下的线段的长度之和为, … 以此类推, 当达到第n个阶段时(n为正整数),余下的线段的长度之和为. 故选:C.【点睛】本题考查有理数的乘方的应用,图形类的变化规律,找出余下的线段的长度之和之间的联系,得出规律是解本题的关键.10、C【分析】由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;故B不符合题意;,运算正确,故C符合题意;故D不符合题意;故选C【点睛】本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.二、填空题1、 2 【分析】根据单项式的次数与系数的定义解决此题.【详解】解:根据单项式的次数与系数的定义,单项式系数是,次数是2.故答案为:,2.【点睛】本题主要考查单项式的次数与系数,熟练掌握单项式的次数与系数的定义是解决本题的关键.单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.2、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.3、(答案不唯一)【分析】根据已知单项式归纳类推出一般规律,由此即可得.【详解】第1个单项式为,第2个单项式为,第3个单项式为,第4个单项式为,第5个单项式为,归纳类推得:第n的单项式为,其中n为正整数,故答案为:.(答案不唯一)【点睛】本题考查了单项式规律题,观察已知单项式,正确归纳类推出一般规律是解题关键.4、3034【分析】根据长方形的边长及滚动方向可得①次滚动得,第②次滚动得,第③次滚动得,第④次滚动距离为1,滚动4次的距离为,4次一个循环,滚动2022次,共经理505次循环,再滚动两次,然后加上边AD的距离即可得.【详解】解:第①次滚动得,第②次滚动得,第③次滚动得,第④次滚动距离为1,滚动4次的距离为:,4次一个循环,滚动2022次,则:,滚动距离为:,与CD边的距离为:,故答案为:3034.【点睛】题目主要考查找规律问题,理解题意,根据矩形的边长及滚动方式找出规律是解题关键.5、【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【详解】解:.故答案为:.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.三、解答题1、;1【解析】【分析】根据整式的加减计算法则和去括号法则化简,然后代值计算即可.【详解】解:,当,时,原式.【点睛】本题主要考查了整式的化简求值和去括号,解题的关键在于能够熟练掌握相关计算法则.2、①﹣27;②﹣24;③2;④﹣18;⑤﹣x2+y2,3【解析】【分析】①将减法统一成加法,然后根据有理数加法交换律和加法结合律进行简便计算;②将除法统一成乘法,然后根据有理数乘法交换律和乘法结合律进行简便计算;③使用乘法分配律进行简便计算;④先算乘方,然后先算小括号里面的,再算括号外面的;⑤原式去括号,合并同类项进行化简,然后代入求值.【详解】解:①原式=﹣18+(﹣3)+6+(﹣12)=[(﹣18)+(﹣12)]+[(﹣3)+6]=﹣30+3=﹣27;②原式=﹣6×26××=[(﹣6)×]×[26×]=2×(﹣12)=﹣24;③原式=×48+×48﹣×48+×48=﹣44+56﹣36+26=2;④原式=﹣9﹣8﹣(﹣93+93)﹣1=﹣9﹣8﹣0﹣1=﹣18;⑤原式=2x2﹣2y2﹣3x2y﹣3x2+3x2y+3y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点睛】此题主要考查了有理数的混合运算,整式的加减—化简求值,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算);掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“−”号,去掉“−”号和括号,括号里的各项都变号)是解题关键.3、,【解析】【分析】先去括号,然后合并同类项,最后将代入求解即可.【详解】解:,当时,原式.【点睛】此题考查了整式的混合运算化简求值问题,熟练掌握去括号、合并同类项法则是解本题的关键.4、3x﹣2y,.【解析】【分析】原式去括号,然后根据整式的加减计算法则合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=2x﹣4y﹣x+2y+2x=3x﹣2y,当x=2,时,原式=.【点睛】本题主要考查了整式的化简求值,去括号,熟知相关计算法则是解题的关键.5、(1);(2)【解析】【详解】(1)(2)【点睛】本题考查了有理数的混合运算,整式的加减运算是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了下列运算正确的是,下列结论中,正确的是,下列计算正确的是,若,,求的值是,若,,,则的值为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试练习题,共15页。试卷主要包含了下列计算正确的是,下列运算正确的是,多项式+1的次数是,计算的结果是,下列运算中正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。