初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步训练题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步训练题,共19页。试卷主要包含了已知,下列运算正确的是,下列计算正确的是,有理数a等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201122、下列说法正确的是( )A.单项式的次数是3,系数是B.多项式的各项分别是,,5C.是一元一次方程D.单项式与能合并3、下列各式运算的结果可以表示为( )A. B.C. D.4、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.65、下列运算正确的是( )A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x26、下列运算正确的是( )A. B.C. D.7、下列计算正确的是( )A.3(x﹣1)=3x﹣1 B.x2+x2=2x4C.x+2y=3xy D.﹣0.8ab+ab=08、若x2+mxy+25y2是一个完全平方式,那么m的值是( )A.±10 B.-5 C.5 D.±59、有理数a、b在数轴上的位置如图所示,则|a|﹣|a+b|﹣|b﹣a|化简后得( )A.2b+a B.2b﹣a C.a D.b10、数左手手指,1为大拇指,数到第2011时对应的手指是( )A.无名指 B.食指 C.中指 D.大拇指第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式﹣a2h的次数为 _____.2、已知x-2y+3=0,则代数式4y-2x-1的值为________.3、如下图,把个两个电阻R1,R2串联起来,线路AB上的电流为I,电压为U,则,当,,时,则U的值为___________.4、若关于、的多项式中不含项,则______.5、观察下面一列数,1,2,﹣3,﹣4,5,6,﹣7,﹣8,9,10,﹣11,﹣12,…则这列数的第2013个数是______.三、解答题(5小题,每小题10分,共计50分)1、在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式的二次项系数,b是绝对值最小的数,c是单项式的次数.请直接写出a、b、c的值并在数轴上把点A,B,C表示出来.2、【教材呈现】人教版八年级上册数学教材第112页的第7题:已知,,求的值.【例题讲解】老师讲解了这道题的两种方法:方法一方法二∵,∴.∴.∵,∴.∵,∵,∵,,∴. 【方法运用】请你参照上面两种解法,解答以下问题.(1)已知,,求的值;(2)已知,求的值.【拓展提升】如图,在六边形中,对角线和相交于点G,当四边形和四边形都为正方形时,若,正方形和正方形的面积和为36,直接写出阴影部分的面积.3、(1)在数轴上分别画出表示下列3个数的点:﹣(﹣4),﹣|﹣3.5|,+(﹣),(2)有理数x,y在数轴上对应点如图所示:①试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接;②化简:|x+y|﹣|y﹣x|+|y|.4、化简:a(a﹣2b)+(a+b)2.5、(1)合并同类项:﹣3x+2y﹣5x﹣7y(2)化简求值:(8mn﹣3m2)﹣5mn﹣2(3nm﹣2m2),其中m=﹣1,n=﹣2 ---------参考答案-----------一、单选题1、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.2、C【分析】根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可.【详解】A. 单项式的次数是4,系数是,故该选项错误,不符合题意;B. 多项式的各项分别是、、-5,故该选项错误,不符合题意;C. 是一元一次方程,正确,符合题意;D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意.故选:C.【点睛】本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项.正确掌握各定义是解答本题的关键.3、B【分析】分析对每个选项进行计算,再判断即可.【详解】A选项:,故A错误;B选项:,故B正确;C选项:,故C错误;D选项:,故D错误.故选B.【点睛】考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.4、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.5、C【分析】根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.【详解】解:A、 ,故本选项错误,不符合题意;B、 ,故本选项错误,不符合题意;C、 ,故本选项正确,符合题意;D、 ,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.6、B【分析】根据幂的运算和乘法公式逐项判断即可.【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B.【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式.7、D【分析】根据去括号和合并同类项的法则逐一判断即可.【详解】解:A、,计算错误,不符合题意;B、计算错误,不符合题意;C、与不是同类项,不能合并,不符合题意;D、,计算正确,符合题意;故选D.【点睛】本题主要考查了去括号和合并同类项,熟知相关计算法则是解题的关键.8、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2+mxy+25y2=x2+mxy+(5y)2,∴mxy=±2x×5y,解得:m=±10.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.9、C【分析】根据图判断a,a+b,b-a的符号,根据绝对值,合并同类项法则化简即可求解.【详解】解:∵a<0<b,且>,∴a<0,a+b<0,b-a>0,∴|a|-|a+b|-| b-a |=-a+a+b-(b-a)=-a+a+b-b+a=a,故选:C.【点睛】本题考查了整式的加减,利用绝对值的意义,合并同类项的法则,解题关键是利用数轴判断绝对值内式子的符号.10、C【分析】根据题意可得::第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,从而得到2011是从2开始的第2011﹣1=2010个数,可得2011是第503个循环组的第2个数,即可求解.【详解】解:根据题意得:第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,∵2011是从2开始的第2011﹣1=2010个数,∴2010÷8=251…2,∴2011是第252个循环组的第2个数,∴第2011与3的位置相同,即中指的位置.故选:C【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.二、填空题1、3【分析】直接根据一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【详解】解:单项式﹣a2h的次数是:2+1=3.
故答案为:3.【点睛】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.2、5【分析】先根据已知等式可得,再将其作为整体代入计算即可得.【详解】解:由得:,则,,,故答案为:5.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题关键.3、295【分析】将,,,代入求解即可.【详解】解:将,,,代入可得:,,,故答案为:295.【点睛】题目主要考查求代数式的值,理解题意是解题关键.4、3【分析】先合并关于xy的同类项,再令项的系数等于零求解.【详解】解:=,∵多项式中不含项,∴-2k+6=0,∴k=3.故答案为:3.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.5、2013【分析】由题意得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此解答即可.【详解】解:根据题意可知,这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数,据此第2013个数的绝对值是2013,∵2013÷4=503…1,∴第2013个数为正数,则第2013个数为2013,故答案为:2013.【点睛】本题主要考查了数字的变化规律,根据已知数的规律得出这组数字的绝对值等于序数,若以四个数为一个周期,每个周期前两个数为正数,后两个数为负数是解题的关键.三、解答题1、,,,见解析【解析】【分析】根据多项式中次数为2的单项式中的数字因数得出a=-1,根据绝对值最小的数是0得出b=0,根据单项式的次数是所有字母的指数和2+1=3,得出c=2+1=3,再把各数在数轴上表示即可.【详解】解:∵a是多项式的二次项系数,∴a=-1,∵b是绝对值最小的数,∴b=0,∵c是单项式的次数.∴c=2+1=3,,将各数在数轴上表示如下: 【点睛】本题考查的形式的项的系数,单项式的次数以及绝对值最小的数,用数轴表示数,掌握相关知识是解题关键.2、(1);(2);拓展提升:阴影部分的面积为14.【解析】【分析】(1)根据已知例题变换完全平方公式即可得;(2)将两个完全平方公式进行变换即可得; 拓展提升:根据图形可得,,结合题意,应用完全平方公式的变形可得,由正方形四条边相等及阴影部分的面积公式,代入求解即可得.【详解】解:(1)∵,∴,∵,∴,∴;(2)∵,∴,∵,∴;拓展提升:∵,∴由图可得:,∴,∵,∴,∴,∵四边形ABGF和四边形CDEG为正方形,∴,,,∴阴影部分的面积为14.【点睛】题目主要考查完全平方公式的运用及变形,理解题中例题,综合运用两个完全平方公式是解题关键.3、(1)见解析;(2)①<<0<<;②【解析】【分析】(1)首先化简各数,进而在数轴上表示即可;(2)①结合数轴进而比较各数即可;②利用数轴进而去绝对值得出答案.【详解】解:(1)-(-4)=4,-|-3.5|=-3.5,+(-)=-,如图所示: ;(2)①由x,y在数轴上的位置可得:<<0<<; (3)由题意得:y<0,x>0,,∴x+y>0,y-x<0,∴原式===【点睛】本题主要考查了有理数大小比较以及数轴和绝对值,正确判断出各项符号是解题关键.4、【解析】【分析】利用单项式乘以多项式和完全平方公式的计算法则去括号,然后合并同类项即可.【详解】解: .【点睛】本题主要考查了整式的混合运算,熟知相关计算法则是解题的关键.5、(1);(2);.【解析】【分析】(1)直接根据合并同类项法则进行计算即可;(2)根据整式的加减运算法则将原式进行化简,代入计算即可.【详解】解:(1)原式===;(2)原式====,当m=﹣1,n=﹣2,原式=.【点睛】本题考查了整式的加减以及化简求值,熟练掌握整式的加减运算法则是解本题的关键.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试练习,共20页。试卷主要包含了下列运算正确的是,下列说法正确的是,下列去括号正确的是.,下列等式成立的是等内容,欢迎下载使用。
这是一份初中数学第六章 整式的运算综合与测试课时练习,共17页。试卷主要包含了下列说法正确的是,下列计算正确的是,下列运算正确的是,下列叙述中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试精练,共18页。试卷主要包含了已知,计算的结果是等内容,欢迎下载使用。