![精品解析2022年京改版七年级数学下册第六章整式的运算专项测评试卷(含答案详细解析)01](http://img-preview.51jiaoxi.com/2/3/12695898/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第六章整式的运算专项测评试卷(含答案详细解析)02](http://img-preview.51jiaoxi.com/2/3/12695898/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第六章整式的运算专项测评试卷(含答案详细解析)03](http://img-preview.51jiaoxi.com/2/3/12695898/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第六章 整式的运算综合与测试课后复习题
展开京改版七年级数学下册第六章整式的运算专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算中,结果正确的是( )
A.
B.
C.
D.
2、下列运算正确的是( )
A.(a2)3=a6 B.a2•a3=a6
C.a7÷a=a7 D.(﹣2a2)3=8a6
3、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、下列运算中,正确的是( )
A.a2a3a2 B.2p(p)3p C.mm0 D.
5、已知一个正方形的边长为a+1,则该正方形的面积为( )
A.a2+2a+1 B.a2-2a+1 C.a2+1 D.4a+4
6、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )
A.1 B.9 C.4 D.6
7、下列计算正确的是( )
A.2a+3b=5ab B.x8÷x2=x6 C.(ab3)2=ab6 D.(x+2)2=x2+4
8、多项式+1的次数是( )
A.1 B.2 C.3 D.4
9、下列运算正确的是( )
A. B.
C. D.
10、下列各式运算的结果可以表示为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、多项式的次数是_____.
2、计算:______.
3、正方形ABDC的轨道上有甲乙两只智能蚂蚁,同时从A出发,甲沿着正方形轨道顺时针出发,速度为每秒1cm,乙沿着正方形轨道逆时针出发,速度为每秒3cm,已知正方形ABDC的轨道边长为1cm,则甲乙在第2021次相遇时的位置在_____________.
4、若关于、的多项式是二次三项式,则_______.
5、若多项式是关于a,b的五次多项式,则______.
三、解答题(5小题,每小题10分,共计50分)
1、我们用表示一个三位数,其中x表示百位上的数,y表示十位上的数,z表示个位上的数,即.
(1)说明一定是111的倍数;
(2)①写出一组a,b,c的取值,使能被7整除,这组值可以是a= ,b= ,c= ;
②若能被7整除,则a,b,c三个数必须满足的数量关系是 .
2、先化简,再求值:,其中,.
3、解答下列问题
(1)先化简再求值: 已知, 求 的值
(2)已知 互为相反数,互为倒数, 的绝对值是2, 求+的值
4、先化简,再求值:,其中,.
5、计算:.
---------参考答案-----------
一、单选题
1、D
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.
【详解】
解:不是同类项,故A不符合题意;
故B不符合题意;
不是同类项,故C不符合题意;
故D符合题意;
故选D
【点睛】
本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.
2、A
【分析】
根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项.
【详解】
解:A、,原选项正确,故符合题意;
B、,原选项错误,故不符合题意;
C、,原选项错误,故不符合题意;
D、,原选项错误,故不符合题意;
故选A.
【点睛】
本题主要考查同底数幂的乘除运算、幂的乘方、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键.
3、C
【分析】
根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.
【详解】
解:(1)整数与分数统称为有理数,说法正确;
(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;
(3)多项式是三次二项式,原说法错误;
(4)倒数等于它本身的数是,说法正确;
(5)与是同类项,说法正确;
综上,说法正确的有(1)(4)(5),共3个,
故选:C.
【点睛】
本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.
4、B
【分析】
根据合并同类项法则逐项计算即可.
【详解】
解:A. a2a3a,原选项不正确,不符合题意;
B. 2p(p)3p,原选项正确,符合题意;
C. mmm,原选项不正确,不符合题意;
D. 不是同类项,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.
5、A
【分析】
由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.
【详解】
解:该正方形的面积为(a+1)2=a2+2a+1.
故选:A.
【点睛】
本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.
6、D
【分析】
根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.
【详解】
解:当y=1时,
ay3+4by+3=a+4b+3=4,
∴a+4b=1,
∵x2﹣2x﹣5=0,
∴x2﹣2x=5,
当y=﹣1时,
﹣2(x+2by)+(x2﹣ay3)
=﹣2x﹣4by+x2﹣ay3
=﹣2x+4b+x2+a
∵a+4b=1,x2﹣2x=5,
∴﹣2x+4b+x2+a
=﹣2x+x2+a+4b
=5+1
=6.
故选:D
【点睛】
本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.
7、B
【分析】
由相关运算法则计算判断即可.
【详解】
2a和3b不是同类项,无法计算,与题意不符,故错误;
x8÷x2=x6,与题意相符,故正确;
(ab3)2=a2b6,与题意不符,故错误;
(x+2)2=x2+2x+4,与题意不符,故错误.
故选:B.
【点睛】
本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.
8、C
【分析】
根据多项式的次数的定义(在多项式中,次数最高的项的次数叫做这个多项式的次数)即可得.
【详解】
解:2a2b−ab2−ab+1
∵2a2b的次数是2+1=3,ab2的次数是1+2=3,ab的次数是1+1=2,
∴这个多项式的次数是3,
故选:C.
【点睛】
本题考查了多项式的次数,熟记定义是解题关键.
9、D
【分析】
直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.
【点睛】
本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.
10、B
【分析】
分析对每个选项进行计算,再判断即可.
【详解】
A选项:,故A错误;
B选项:,故B正确;
C选项:,故C错误;
D选项:,故D错误.
故选B.
【点睛】
考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.
二、填空题
1、5
【分析】
根据多项式次数的概念来解答.
【详解】
解:代数式次数是五次,
故答案为:5.
【点睛】
本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.
2、
【分析】
根据单项式乘单项式运算法则、同底数幂的乘法法则计算即可.
【详解】
解:=,
故答案为:.
【点睛】
本题考查整式的乘法、同底数幂的乘法,熟练掌握运算法则是解答的关键.
3、B点
【分析】
根据题意得出甲乙第一次相遇的位置是B点,第二次相遇的位置是D点,第三次相遇的位置是C点,第四次相遇的位置是A点,可得出四个为一循环,即可得出第2021次相遇时的位置.
【详解】
解:∵甲沿着正方形轨道顺时针出发,速度为每秒1cm,乙沿着正方形轨道逆时针出发,速度为每秒3cm,
第一秒时,甲从A点顺时针走到B点,乙从A点逆时针走到B点,此时甲乙相遇;
第二秒时,甲从B点顺时针走到D点,乙从B点逆时针走到D点,此时甲乙相遇;
第三秒时,甲从D点顺时针走到C点,乙从D点逆时针走到C点,此时甲乙相遇;
第四秒时,甲从C点顺时针走到A点,乙从C点逆时针走到A点,此时甲乙相遇;
第五秒时,甲从A点顺时针走到B点,乙从A点逆时针走到B点,此时甲乙相遇;
......
∴四个为一循环,
∴余1,
∴甲乙在第2021次相遇时的位置在B点.
故答案为:B点.
【点睛】
此题考查了规律问题,解题的关键是正确分析出题目中的规律.
4、
【分析】
直接利用多项式系数与次数确定方法得出−2m−1=0,进而得出答案.
【详解】
解:∵关于x、y的多项式2x2+3mxy−y2−xy−5是二次三项式,
∴3mxy−xy=0,
则3m−1=0,
解得:m=.
故答案为:.
【点睛】
此题主要考查了多项式,正确掌握相关定义是解题关键.
5、5或-3或5
【分析】
根据题意可得,进一步即得答案;
【详解】
解:因为多项式是关于a,b的五次多项式,
所以,
所以m=5或-3;
故答案为:5或-3
【点睛】
本题考查了多项式的相关概念,正确理解题意、掌握多项式的次数的概念是关键.
三、解答题
1、(1)证明见解析;(2)①;②或或
【解析】
【分析】
(1)列代数表示,再合并同类项,再利用乘法的分配律进行变形,从而可得答案;
(2)①由,可得一定是7的因数,从而可得答案;②由能被7整除,可得一定是7的因数,而都为至的正整数,从而可得答案.
【详解】
解:(1)
一定是的倍数.
(2)① ,
而不是的因数,所以一定是7的因数,
令 则
故答案为:(答案不唯一)
② 能被7整除,
所以一定是7的因数,而都为至的正整数,
则a,b,c三个数必须满足的数量关系为:
或或
【点睛】
本题考查的是列代数式,乘法的分配律的应用,合并同类项,整除的含义,掌握“用代数式表示一个三位数”是解本题的关键.
2、
【解析】
【分析】
先利用乘法公式以及单项式乘多项式去括号,然后合并同类项,最后利用整式除法,求出化简结果,字母的值代入化简结果,求出整式的值.
【详解】
解:
当,时,
原式.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握乘法公式、单项式乘多项式去括号以及整式除法法则,是求解该题的关键.
3、(1),9;(2)5或-11
【解析】
【分析】
(1)先由非负数性质求出x、y的值,再将所求代数式去括号、合并同类项,代入即可得答案;
(2)利用相反数,倒数以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.
【详解】
解:(1)
由题意可知, , 代入上式
(2) 由题意可知,
当时,
.
当时,
【点睛】
本题考查整式的加减--化简求值,非负数性质,相反数、倒数和绝对值的意义及代数式求值,熟练掌握法则是解题关键.
4、;
【解析】
【分析】
去括号得,将代入求值即可.
【详解】
解:原式
,
当时,
原式
.
【点睛】
本题考查了整式加减中的去括号.解题的关键在于去括号时正负号的确定.
5、
【解析】
【分析】
根据整式的乘法运算法则、合并同类项法则进行计算即可.
【详解】
解:
=
=.
【点睛】
本题考查整式的乘除、合并同类项,熟练掌握运算法则是解答的关键.
2021学年第六章 整式的运算综合与测试同步训练题: 这是一份2021学年第六章 整式的运算综合与测试同步训练题,共17页。试卷主要包含了下列式子,下列运算不正确的是,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
2021学年第六章 整式的运算综合与测试随堂练习题: 这是一份2021学年第六章 整式的运算综合与测试随堂练习题,共19页。试卷主要包含了下列运算正确的是,下列判断正确的是,下列说法不正确的是,下列等式成立的是等内容,欢迎下载使用。
2020-2021学年第六章 整式的运算综合与测试课时作业: 这是一份2020-2021学年第六章 整式的运算综合与测试课时作业,共17页。试卷主要包含了若,,则的值为,化简x-2,下列运算正确的是,下列运算不正确的是,下列说法正确的是等内容,欢迎下载使用。