2021学年第六章 整式的运算综合与测试当堂达标检测题
展开京改版七年级数学下册第六章整式的运算重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A.x2+x2=2x4 B.x2∙x3=x6 C.(x2)3=x6 D.(-2x)2=-4x2
2、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.572
3、如图所示,有一些点组成的三角形的图形,每条“边”(包括两个顶点)有n()个点,每个图形总的点数可以表示为s,当时,s的值是( )
A.36 B.33 C.30 D.27
4、若,,求的值是( )
A.6 B.8 C.26 D.20
5、下列各式中,计算结果为的是( )
A. B.
C. D.
6、已知,m,n均为正整数,则的值为( ).
A. B. C. D.
7、下列运算中,正确的是( )
A.a2a3a2 B.2p(p)3p C.mm0 D.
8、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )
A.30 B.33 C.35 D.42
9、多项式+1的次数是( )
A.1 B.2 C.3 D.4
10、下列计算中,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下面一列数,按某种规律在横线上填上适当的数:1,,,,____,_____,则第n个数为_____.
2、已知,,则多项式的值为______.
3、下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系_________.
4、计算b3•b4=_____.
5、如图,边长为a和2的两个正方形拼在一起,试写出阴影部分的面积为_____.(结果要化简)
三、解答题(5小题,每小题10分,共计50分)
1、(1)数学课堂上老师留了道数学题, 如图1,用式子表示空白部分的面积.
甲,乙,丙,丁4名同学表示的式子是:
甲:
乙:
丙:
丁:
4名同学中正确的学生是______;(填“甲”,“乙”,“丙”,“丁”)
(2)如图2,有一块长为米,宽为米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化,已知两条道路的宽分别为米和米,求绿地的面积(用含a,b的式子来表示)
2、阅读下列材料:
1×2=(1×2×3﹣0×1×2);
2×3=(2×3×4﹣1×2×3);
3×4=(3×4×5﹣2×3×4);
由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+19×20(写出过程).
(2)猜想:1×2+2×3+3×4+…+n(n+1)= .
(3)探究计算:1×2×3+2×3×4+3×4×5+…+17×18×19.
3、观察下面的变形规律:
=;=;=……
解答下面各题:
(1)若n为正整数,请你猜想=_________;
(2)求和:+++…+.
4、做大小不同的两个长方体纸盒,尺寸如下(单位:cm):
| 长 | 宽 | 高 |
小纸盒 | 2b | 1.5c | |
大纸盒 | 2.5 | 4b | 3c |
(1)做这两个纸盒共用材料多少平方厘米?
(2)做大纸盒比做小纸盒多用材料多少平方厘米?
5、计算:
(1)
(2)
---------参考答案-----------
一、单选题
1、C
【分析】
根据合并同类项,同底数幂相乘,幂的乘方,积的乘方法则逐项判断即可求解.
【详解】
解:A、 ,故本选项错误,不符合题意;
B、 ,故本选项错误,不符合题意;
C、 ,故本选项正确,符合题意;
D、 ,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了合并同类项,同底数幂相乘,幂的乘方,积的乘方,熟练掌握合并同类项,同底数幂相乘,幂的乘方,积的乘方法则是解题的关键.
2、D
【分析】
由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.
【详解】
解:第一个图形中有:个正方形;
第二个图形中有:个正方形,
第三个图形有:个正方形,
∴可以推出第n个图形有,
∴第 11 个图形中正方形的个数是
个正方形,
故选D.
【点睛】
本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.
3、C
【分析】
当时,,当时,,当时,,当时,,可以推出当时,,由此求解即可.
【详解】
解:当时,,
当时,,
当时,,
当时,,
∴当时,,
∴当时,,
故选C.
【点睛】
本题主要考查了图形类的规律问题,解题的关键在于能够根据题意找到规律求解.
4、B
【分析】
根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.
【详解】
解:∵,
∴,
∵,
∴,
∴.
故选:B.
【点睛】
本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.
5、B
【分析】
根据幂的运算法则即可求解.
【详解】
A. =,故错误;
B. =,正确;
C. 不能计算,故错误;
D. =,故错误;
故选B.
【点睛】
此题主要考查幂的运算,解题的关键是熟知其运算法则.
6、C
【分析】
根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.
【详解】
解:∵
∴
故选C
【点睛】
本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.
7、B
【分析】
根据合并同类项法则逐项计算即可.
【详解】
解:A. a2a3a,原选项不正确,不符合题意;
B. 2p(p)3p,原选项正确,符合题意;
C. mmm,原选项不正确,不符合题意;
D. 不是同类项,原选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.
8、C
【分析】
由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.
【详解】
解:∵第1个图形需要黑色棋子的个数是2×3-3=3,
第2个图形需要黑色棋子的个数是3×4-4=8,
第3个图形需要黑色棋子的个数是4×5-5=15,
…
∴第5个图形需要黑色棋子的个数是.
故选:C.
【点睛】
本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.
9、C
【分析】
根据多项式的次数的定义(在多项式中,次数最高的项的次数叫做这个多项式的次数)即可得.
【详解】
解:2a2b−ab2−ab+1
∵2a2b的次数是2+1=3,ab2的次数是1+2=3,ab的次数是1+1=2,
∴这个多项式的次数是3,
故选:C.
【点睛】
本题考查了多项式的次数,熟记定义是解题关键.
10、D
【分析】
根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.
【详解】
A. ,故选项A不正确;
B. ,故选项B不正确;
C. ,故选项C不正确;
D. ,故选项D正确.
故选:D.
【点睛】
本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.
二、填空题
1、
【分析】
根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.
【详解】
解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.
故答案是:,,
【点睛】
主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
2、9
【分析】
多项式可变形为,然后整体代入即可求解.
【详解】
解:
,
∵,,
∴原式
,
故答案为:9.
【点睛】
本题主要考查了代数式求值,解题关键是掌握整体思想,将代数式变形为已知式相关的形式求解.
3、d-c=b-a
【分析】
此题可以有多种表示方法:①横向来看,左右两个数的差都是1;②纵向看,上下两个数字的差相等;③对角线的角度看,两个数字的和相等.
【详解】
解:d-c=b-a(答案不唯一).
故答案为:d-c=b-a.
【点睛】
本题考查了数字变化规律,熟悉生活中的一些常识,能够把数学和生活密切联系起来.从所给材料中分析数据得出规律是应该具备的基本数学能力.
4、
【分析】
根据同底数幂的乘法法则即可得.
【详解】
解:,
故答案为:.
【点睛】
本题考查了同底数幂的乘法,熟练掌握运算法则是解题关键.
5、
【分析】
根据题意利用阴影部分的面积为:S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF进而求出答案.
【详解】
解:如图所示:当a=4cm时阴影部分的面积为:
S正方形ABCD+S正方形MCEF+S△DMF﹣S△ABD﹣S△BEF
=a×a+2×2+×(a- 2)×2﹣×a×a﹣×2×(a+ 2)
=
=,
故答案为:.
【点睛】
此题主要考查了列代数式和整式的运算,正确理解总面积减去空白面积=阴影部分面积,列出算式进行计算是解题关键.
三、解答题
1、(1)丙,丁;(2)
【解析】
【分析】
(1)用长方形面积减去小路面积或通过平移把绿地拼成一个长方形,即可列出代数式;
(2)类似(1)的方法列出代数式即可.
【详解】
解:(1)长方形的面积为:;
两条小路的面积为:和,
两条小路重合部分面积为:,
故列式为;
绿地拼在一起是长方形,两边分别为:,
故列式为:;
故答案为:丙,丁;
(2)根据(1)的方法可求绿地的面积:,
【点睛】
本题考查了列代数式和整式的运算,解题关键是熟练运用整式运算法则进行计算.
2、(1)2660;过程见解析;(2)[n×(n+1)×(n+2)];(3)29070.
【解析】
【分析】
(1)根据题意规律进行解答即可;
(2)根据题意规律进行解答即可;
(3)仿照(1)(2)可得中的规律进行解答即可.
【详解】
(1)1×2+2×3+3×4+…+19×20
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(19×20×21﹣18×19×20)
=(19×20×21)
=19×20×7
=2660;
(2)1×2+2×3+3×4+…+n(n+1)
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+ [n×(n+1)×(n+2)﹣(n﹣1)×n×(n+1)]
= [n×(n+1)×(n+2)],
故答案为: [n×(n+1)×(n+2)];
(3)1×2×3+2×3×4+3×4×5+…+17×18×19
=(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+(3×4×5×6﹣2×3×4×5)+…+(17×18×19×20﹣16×17×18×19)
=(17×18×19×20)
=29070.
【点睛】
本题考查了数字的变化规律,根据所给式子,探索式子的一般规律,并能准确计算是解题的关键.
3、(1)
(2)
【解析】
【分析】
(1)根据变形规律写出减法算式即可.
(2)把每一个乘法算式都裂项变成材料中的减法,再相互抵消达到简化计算的效果.
【详解】
(1)
故答案为:
(2)原式=
=
=
【点睛】
本题考查裂项相消法求式子的值,掌握相邻两个分数乘法转换成减法是本题关键.
4、(1)24b+18c+30bc;(2)16b+12c+18bc
【解析】
【分析】
(1)用矩形的面积公式分别求出大小纸盒的用料即可;
(2)用大纸盒的用料减去做小纸盒的用料即可.
【详解】
解:(1)(4b+3c+6bc)+(20b+15c+24bc)
=(24b+18c+30bc)平方厘米
(2)(20b+15c+24bc)-(4b+3c+6bc)=(16b+12c+18bc)平方厘米
【点睛】
本题考查了几何体的表面积列代数式以及合并同类项,是基础知识比较简单,关键是对矩形面积公式的应用.
5、(1);(2)
【解析】
【详解】
(1)
(2)
【点睛】
本题考查了有理数的混合运算,整式的加减运算是解题的关键.
数学七年级下册第六章 整式的运算综合与测试习题: 这是一份数学七年级下册第六章 整式的运算综合与测试习题,共18页。试卷主要包含了下列结论中,正确的是等内容,欢迎下载使用。
2020-2021学年第六章 整式的运算综合与测试当堂达标检测题: 这是一份2020-2021学年第六章 整式的运算综合与测试当堂达标检测题,共21页。试卷主要包含了单项式的系数和次数分别是,已知整数,下列叙述中,正确的是,下列运算不正确的是,下列计算中,正确的是等内容,欢迎下载使用。
北京课改版第六章 整式的运算综合与测试习题: 这是一份北京课改版第六章 整式的运算综合与测试习题,共20页。试卷主要包含了多项式+1的次数是,下列各式中,计算结果为的是,下列计算正确的是等内容,欢迎下载使用。