![精品解析2022年京改版七年级数学下册第六章整式的运算专题练习试卷(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12695997/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第六章整式的运算专题练习试卷(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12695997/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第六章整式的运算专题练习试卷(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12695997/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第六章 整式的运算综合与测试课堂检测
展开
这是一份初中数学第六章 整式的运算综合与测试课堂检测,共16页。试卷主要包含了下列计算正确的是,下列说法正确的是,下列叙述中,正确的是,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列判断正确的是( )A.3a2bc与bca2不是同类项B.和都是单项式C.单项式﹣x3y2的次数是3D.多项式3x2﹣y+2xy2是三次三项式2、下列运算正确的是( )A. B. C. D.3、若,,求的值是( )A.6 B.8 C.26 D.204、下列计算正确的是( )A.a+b=ab B.7a+a=7a2C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b5、下列说法正确的是( )A.是单项式 B.0不是单项式C.是单项式 D.是单项式6、下列叙述中,正确的是( )A.单项式的系数是B.a,π,52都是单项式C.多项式3a3b+2a2﹣1的常数项是1D.是单项式7、小明发现一种方法来扩展数,并称这种方法为“展化”,步骤如下(以﹣11为例):①写出一个数:﹣11;②将该数加1,得到数:﹣10;③将上述两数依序合并在一起,得到第一次展化后的一组数:[﹣11,﹣10];④将[﹣11,﹣10]各项加1,得到[﹣10,﹣9],再将这两组数依序合并,可得第二次展化后的一组数:[﹣11,﹣10,﹣10﹣9];…按此步骤,不断展化,会得到一组数:[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8].则这组数的第255个数是( )A.﹣5 B.﹣4 C.﹣3 D.118、下列运算正确的是( )A.3a+2a=5a2 B.﹣8a2÷4a=2aC.4a2•3a3=12a6 D.(﹣2a2)3=﹣8a69、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.59910、如果代数式的值为7,那么代数式的值为( )A. B.2 C. D.0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:____2、多项式的次数是_____.3、观察:①32=9=4+5,则有32+42=52;②52=25=12+13,则有52+122=132;③72=49=24+25,则有72+242=252;④92=81=40+41,则有92+402=412,….仔细观察式子的特点,请你用含n(n≥3,且n为自然数)的式子写出第n个式子:___.4、观察下列单项式:2x,5x2,10x3,17x4,26x5,…,按此规律,第10个单项式是_____.5、减去等于的多项式是______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1) (2)2、若,求的值.3、计算:(1);(2);(3);(4).4、先化简,再求值:,其中.5、先化简,在求值:其中,. ---------参考答案-----------一、单选题1、D【分析】选项A根据同类项的定义判断即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项;选项B、C根据单项式的定义判断即可,单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;一个单项式中所有字母的指数的和叫做单项式的次数;选项D根据多项式的定义判断即可,多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.【详解】解:A、 3a2bc与bca2所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B、是多项式,故原说法错误,故本选项不合题意;C、单项式﹣x3y2的次数是5,故本选项不合题意;D、多项式3x2﹣y+2xy2是三次三项式,故本选项符合题意;故选:D.【点睛】本题考查了同类项,单项式和多项式,熟记相关定义是解答本题的关键.2、D【分析】根据整式的运算法则逐项检验即可.【详解】解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;B、,原计算错误,故该选项不符合题意;C、,原计算错误,故该选项不符合题意;D、,正确,故该选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.3、B【分析】根据题意利用完全平方和公式可得,进而整体代入,即可求出的值.【详解】解:∵,∴,∵,∴,∴.故选:B.【点睛】本题考查代数式求值,熟练掌握运用完全平方和公式进行变形与整体代入计算是解题的关键.4、C【分析】根据整式的加减运算法则和去括号法则即可求出答案.【详解】解:A、a与b不是同类项,故不能合并,故A不符合题意.B、7a+a=8a,故B不符合题意.C、3x2y﹣2yx2=x2y,故C符合题意.D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.故选C.【点睛】本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.5、C【分析】根据单项式的定义逐个判断即可.【详解】解:A、是分式,不是整式,不是单项式,故本选项不符合题意;B、0是单项式,故本选项不符合题意;C、是单项式,正确,故本选项符合题意;D、是多项式,不是单项式,故本选项不符合题意;故选:C.【点睛】本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.6、B【分析】根据单项式的定义,单项式的系数的定义,多项式的项的定义逐个判断即可.【详解】解:A.单项式的系数是,故本选项不符合题意;B.a,π,52都是单项式,故本选项符合题意;C.多项式3a3b+2a2﹣1的常数项是﹣1,故本选项不符合题意;D.是多项式,不是单项式,故本选项不符合题意;故选:B.【点睛】本题主要考查了单项式的定义,单项式的系数和多项式的定义,准确分析判断是解题的关键.7、B【分析】依据题意列举前3次展化结果寻找规律,再按照规律倒推出结果.【详解】解:依题意有-11第1次展化为[﹣11,﹣10],有2个数-11第2次展化为[﹣11,﹣10,﹣10,﹣9],有22个数-11第3次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8],有23个数由此可总结规律-11第n次展化为[﹣11,﹣10,﹣10,﹣9,﹣10,﹣9,﹣9,﹣8,……],有2n个数∴-11第8次展化有28=256个数∴第255位为-11第8次展化的这组数的倒数第二位数第8次展化的倒数第2位数由第7次展化后的倒数第2位数加1所得同理第7次展化的倒数第2位数由第6次展化后的倒数第2位数加1所得以此类推第4次展化的倒数第2位数由第3次展化后的倒数第2位数加1所得故第8次展化的倒数第2位数由第3次展化后的倒数第2位数加5所得则-9+5=-4故选:B.【点睛】此题主要考查了数字变化规律,观察得出每次展化之间的关系是解题的关键.8、D【分析】根据合并同类项,同底数幂的除法和乘法法则,积的乘方和幂的乘方法则,逐项计算即可.【详解】A.,故该选项错误,不符合题意; B.,故该选项错误,不符合题意;C.,故该选项错误,不符合题意; D. ,故该选项正确,符合题意;故选:D.【点睛】本题考查合并同类项,同底数幂的除法和乘法,积的乘方和幂的乘方.掌握各运算法则是解答本题的关键.9、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.10、D【分析】根据题意可得,变形为,将其代入代数式求解即可.【详解】解:∵,∴,∴,∴,故选:D.【点睛】题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.二、填空题1、【分析】把它们化为指数相同的幂,再比较大小即可.【详解】解:∵2444=(24)111=16111,3333=(33)111=27111,而16111<27111,∴2444<3333,故答案为:<.【点睛】本题主要考查了幂的乘方以及有理数大小比较,熟记幂的运算法则是解答本题的关键.2、5【分析】根据多项式次数的概念来解答.【详解】解:代数式次数是五次,故答案为:5.【点睛】本题考查了多项式的次数,掌握多项式的次数是多项式中次数最高的项的次数是解题的关键.3、,则有.【分析】根据① ,则有;②,则有;③,则有,找到规律进行求解即可.【详解】解:∵① ,则有;②,则有;③,则有;④,则有,∴可以得到第n个式子为:,则有,故答案为:,则有.【点睛】本题主要考查了数字类的规律型问题,解题的关键在于能够根据题意找到规律进行求解.4、101x10【分析】分析题中每个单项式,系数为(n2+1),含未知数的部分为:xn,则第n项应为:(n2+1)xn.【详解】解:所给单项式分别是2x,5x2,10x3,17x4,26x5,…,
则第n个单项式为:(n2+1)xn.
故第10个单项式为:(102+1)x10=101x10.
故答案为:101x10.【点睛】本题考查了单项式,解题的关键是发现所给单项式的系数和次数规律,从而解答问题.5、【分析】根据差+减数=被减数,计算即可得到结果.【详解】解:根据题意得:=,
故答案为:.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.三、解答题1、(1);(2)【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1) (2) 【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.2、25【解析】【分析】首先根据完全平方公式可得,进而得到(x−1)2+(y+3)2=0,再根据偶次幂的性质可得x−1=0,y+3=0,求得x、y,再代入求得答案即可.【详解】解:∵,∴x2−2x+1+y2+6y+9=0,∴(x−1)2+(y+3)2=0,∴x−1=0,y+3=0,∴x=1,y=−3,∴(2x−y)2=(2+3)2=25.【点睛】此题主要考查了配方法的运用,非负数的性质,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.3、(1)-11;(2)5;(3);(4)x2.【解析】【分析】(1)由题意先将减法统一成加法,然后再计算;(2)根据题意先将除法统一成乘法,然后再计算;(3)由题意先算乘方,然后算乘除,最后算加减;(4)根据题意先去括号,然后合并同类项进行化简即可.【详解】解:(1)=5+3+(-7)+(-12)=8+(-7)+(-12)=1+(-12)=-(12-1)=-11;(2)==5;(3)===;(4)==x2.【点睛】本题主要考查有理数的混合运算,整式的加减运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算),合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号)是解题的关键.4、,2【解析】【分析】先去括号,合并同类项,再将未知数的值代入计算.【详解】解:原式==,当时,原式=2.【点睛】此题考查了整式的化简求值,掌握整式的加减法计算法则是解题的关键.5、;1【解析】【分析】根据整式的加减计算法则和去括号法则化简,然后代值计算即可.【详解】解:,当,时,原式.【点睛】本题主要考查了整式的化简求值和去括号,解题的关键在于能够熟练掌握相关计算法则.
相关试卷
这是一份北京课改版七年级下册第六章 整式的运算综合与测试当堂检测题,共19页。试卷主要包含了如果a﹣4b=0,那么多项式2,下列说法正确的是,下列运算正确的是,用“※”定义一种新运算,观察下列这列式子等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共19页。试卷主要包含了下列说法正确的是,下列运算正确的是,若,,求的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题,共18页。试卷主要包含了下列运算正确的是,如果a﹣4b=0,那么多项式2,下列各式中,计算结果为的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)