2021学年第六章 整式的运算综合与测试同步练习题
展开
这是一份2021学年第六章 整式的运算综合与测试同步练习题,共16页。试卷主要包含了多项式的次数和常数项分别是,下列运算不正确的是,下列等式成立的是,下列计算正确的有等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48;第二次输出的结果为24,…,则第2019次输出的结果为( )A.0 B.1 C.2 D.﹣12、多项式+1的次数是( )A.1 B.2 C.3 D.43、单项式的系数和次数分别是( )A.-2,5 B.,5 C.,2 D.,24、如图是一组有规律的图案,第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形,…,依此规律,若第n个图案中有2400个小正方形,则n的值为( )A.593 B.595 C.597 D.5995、多项式的次数和常数项分别是( )A.1和 B.和 C.2和 D.3和6、下列运算不正确的是( )A. B. C. D.7、1883年,康托尔构造了一个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为( )A. B. C. D.8、下列等式成立的是( )A. B.C. D.9、下列计算正确的有( )① ② ③ ④A.3个 B.2个 C.1个 D.0个10、对代数式-(a-b)进行去括号运算,结果正确的是( )A.a-b B.-a-b C.a+b D.–a+b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:+÷=____________. 2、若,,则=______________.3、黑白两种颜色的纸片,按如图所示的规律拼成若干个图案,第n个图形有白纸片____________张. 4、如图,王老师把家里的密码设置成了数学问题.吴同学来王老师家做客,看到图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr.Wang's house王浩阳密码 5、在2022年迎新联欢会上,数学老师和同学们做了一个游戏.她在,,三个盘子里分别放了一些小球,小球数依次为,,,记为.游戏规则如下:三个盘子中的小球数,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记为一次操作;次操作后的小球数记为.若,则______,______.三、解答题(5小题,每小题10分,共计50分)1、在数学习题课中,同学们为了求的值,进行了如下探索:(1)某同学设计如图1所示的几何图形,将一个面积为1的长方形纸片对折.(I)求图1中部分④的面积;(II)请你利用图形求的值;(III)受此启发,请求出的值;(2)请你利用备用图,再设计一个能求与的值的几何图形.2、先化简,再求值:3、先化简,再求值:,其中.4、先化简,再求值,其中,5、计算:(1) (2) ---------参考答案-----------一、单选题1、B【分析】按照程序进行计算,发现规律,利用规律求解即可.【详解】解:当输入x=96时,第一次输出96×=48;当输入x=48时,第二次输出48×=24;当输入x=24时,第三次输出24×=12;当输入x=12时,第四次输出12×=6;当输入x=6时,第五次输出6×=3;当输入x=3时,第六次输出3×3﹣1=8;当输入x=8时,第七次输出8×=4;当输入x=4时,第八次输出4×=2;当输入x=2时,第九次输出2×=1;当输入x=1时,第十次输出3×1﹣1=2;…∴从第8次开始,以2,1的形式循环出现,∵(2019﹣7)÷2=1006,∴第2019次输出的结果为:1.故选:B.【点睛】本题考查了有理数的运算,解题关键是根据运算结果发现规律,利用规律解题.2、C【分析】根据多项式的次数的定义(在多项式中,次数最高的项的次数叫做这个多项式的次数)即可得.【详解】解:2a2b−ab2−ab+1∵2a2b的次数是2+1=3,ab2的次数是1+2=3,ab的次数是1+1=2,∴这个多项式的次数是3,故选:C.【点睛】本题考查了多项式的次数,熟记定义是解题关键.3、B【分析】根据单项式系数及次数定义解答.【详解】解:单项式的系数和次数分别是,2+1+2=5,故选:B.【点睛】此题考查了单项式的次数及系数的定义,熟记定义是解题的关键.4、D【分析】根据第1个图案中有8个小正方形,第2个图案中有12个小正方形,第3个图案中有16个小正方形……依此规律即可得出答案.【详解】解:第1个图案中小正方形的个数为:8,第2个图案中小正方形的个数为:,第3个图案中小正方形的个数为:……依此规律,第个图案中小正方形的个数为:. ∴,解得,故选D【点睛】本题主要考查了图形规律题,解题的关键是找出它们之间的变化规律,按照这一变化规律进行解答即可.5、D【分析】多项式的次数是其中最大的非零项的次数;多项式中不含字母的项是常数项.【详解】解:有题意可知多项式的次数为3,常数项为故选D.【点睛】本题考查了多项式的次数和常数项.解题的关键在于正确判断次数所在的项.常数项的符号是易错点.6、C【分析】根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可直接进行排除选项.【详解】解:A、,原选项正确,故不符合题意;B、,原选项正确,故不符合题意;C、与不是同类项,不能合并,原选项错误,故符合题意;D、,原选项正确,故不符合题意;故选C.【点睛】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项是解题的关键.7、C【分析】根据题意具体表示前几个式子,然后总结归纳规律,即可得到答案.【详解】解:由题意得:第一阶段时,余下的线段的长度之和为, 第二阶段时,余下的线段的长度之和为, 第三阶段时,余下的线段的长度之和为, … 以此类推, 当达到第n个阶段时(n为正整数),余下的线段的长度之和为. 故选:C.【点睛】本题考查有理数的乘方的应用,图形类的变化规律,找出余下的线段的长度之和之间的联系,得出规律是解本题的关键.8、D【分析】利用同底数幂的乘法法则,完全平方公式,幂的乘方对各项进行运算即可.【详解】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意;故选:D.【点睛】本题考查了同底数幂的乘法法则,完全平方公式,幂的乘方,掌握同底数幂的乘法法则,完全平方公式,幂的乘方运算法则是解题的关键.9、B【分析】括号前为正号,去括号不变号;若为符号,去括号变号;提取公因式,合并同类项.【详解】解:,所以正确,符合题意;,所以错误,不符合题意;,所以错误,不符合题意; ,所以正确,符合题意.故选B.【点睛】本题考查了整式加减运算中的去括号与合并同类项.解题的关键找出同类项,正确的去括号.10、D【分析】根据去括号法则进行计算即可.【详解】解:代数式-(a-b)进行去括号运算,结果是–a+b.故选:D【点睛】本题考查了去括号法则,解题关键是明确括号前面是负号时,括号内各项都变号.二、填空题1、【分析】由题意先计算同底数幂的乘法和同底数幂的除法,最后合并同类项即可得出答案.【详解】解:+÷=.故答案为:.【点睛】本题考查整式的乘除,熟练掌握同底数幂的乘法和同底数幂的除法运算是解题的关键.2、90【分析】跟胡同底数幂的乘法和幂的乘方公式的逆运算,即可求解.【详解】解:=,故答案是:90.【点睛】本题主要考查同底数幂的乘法和幂的乘方公式,熟练掌握它们的逆运用是解题的关键.3、(3n+1)n)【分析】先求出每一个图形的白色纸片的块数,找出规律,后一个图形比前一个图形的白色纸片多3块,然后总结出第n个图形的表示纸片的块数;【详解】解:第1个图形有白色纸片有:4=3+1块,第2个图形有白色纸片有:7=3×2+1块,第3个图形有白色纸片有:10=3×3+1块,…,第n个图形有白色纸片:3n+1块,故答案为:(3n+1).【点睛】本题考查了图形的变化规律,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.4、yang8888【分析】根据题中wifi密码规律确定出所求即可.【详解】解:阳阳故答案为:yang8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.5、(6,8,13) (9,8,10) 【分析】根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.【详解】解:∵G0=(3,5,19),
∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),
G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),
G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),
……
∴从G5开始每3次为一个周期循环,
∵(2022−4)÷3=672……2,
∴G2022=G6=(9,8,10),
故答案为:(6,8,13),(9,8,10).【点睛】本题考查了有理数混合运算与数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.三、解答题1、(1)(I);(II);(III);(2)见解析.【解析】【分析】(1)(ⅰ)根据题目中的图形和题意,计算出部分④的面积即可;(ⅱ)根据图形,可以所求式子的值即可;(ⅲ)根据(2)中的结果,直接写出所求式子的值即可;(2)将长方形分成两个全等的三角形,然后继续分割两个小一点的全等三角形,依次继续分割即可即可解答(答案不唯一).【详解】解:(1)(ⅰ)由题意可得,部分④的面积是;(ⅱ)由题意可得:;(ⅲ)根据(2)中的结果,可推到出:=;(2)可设计如图所示:(答案不唯一,符合题意即可).【点睛】本题主要考查了数字的变化规律、有理数的混合运算等知识点,明确题意并灵活利用数形结合的思想是解答本题的关键.2、-5+5xy,0【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】原式= =-5+5xy,当x=1,y=-1时,原式= -5×+5×1×(-1)=0.【点睛】本题考查了去括号法则,合并同类项,正确去括号,合并同类项是解题的关键.3、【解析】【分析】先去括号,再根据合并同类项化简,最后将代入到化简后的结果进行计算即可【详解】解:当时,原式【点睛】本题考查了整式的化简求值,正确的去括号是解题的关键.4、,-11【解析】【分析】先去括号,合并同类项,再将字母的值代入计算即可.【详解】解: ==当,时,原式===-11.【点睛】此题考查了整式加减中的化简求值,正确掌握整式的加减计算法则是解题的关键.5、(1);(2)【解析】【分析】(1)分别计算同底数幂的乘法,积的乘方运算,再合并同类项即可;(2)先计算多项式乘以多项式,结合平方差公式进行简便运算,再合并同类项即可.【详解】解:(1) (2) 【点睛】本题考查的是幂的运算,合并同类项,整式的乘法运算,掌握“利用平方差公式进行简便运算”是解本题的关键.
相关试卷
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。
这是一份数学七年级下册第六章 整式的运算综合与测试课时训练,共16页。试卷主要包含了下列计算正确的有,下列叙述中,正确的是,下列说法不正确的是,已知整数,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步达标检测题,共17页。试卷主要包含了下列运算正确的是,下列表述正确的是,下列式子正确的是,单项式的系数和次数分别是等内容,欢迎下载使用。