初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后练习题,共16页。试卷主要包含了下列计算中,结果正确的是,观察下列各式,下列运算正确的是等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A. B.C. D.2、把多项式按的降幂排列,正确的是( )A. B.C. D.3、若(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,则a,b的值可以是( )A.0,0 B.0,﹣1 C.2,0 D.2,﹣14、如图所示,把同样大小的黑色棋子分别摆放在正多边形(正三角形、正四边形、正五边形、正六边形…)的边上,按照这样的规律继续摆放下去…,则第5个图形需要黑色棋子的个数是 ( )A.30 B.33 C.35 D.425、下列计算中,结果正确的是( )A.B.C.D.6、观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;….请你根据观察得到的规律判断下列各式中正确的是( )A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1006+1008+1009+…+3017=201127、已知,m,n均为正整数,则的值为( ).A. B. C. D.8、已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的( )A.左侧1010厘米 B.右侧1010厘米C.左侧1011厘米 D.右侧1011厘米9、下列运算正确的是( )A. B. C. D.10、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.572第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个单项式满足下列条件:①系数是,②次数是2.请写出一个同时满足上述两个条件的单项式:______.2、利用一边为另一边为的等腰三角形做拼图游戏,按照如图所示的方式组合,当使用第个等腰三角形时,所拼成的图形的周长为___________.3、减去等于的多项式是______.4、定义一种新运算⊗:x⊗y=3x﹣2y,那么(﹣5)⊗4=___.5、计算:________________.三、解答题(5小题,每小题10分,共计50分)1、已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.2、王老师在黑板上写下了四个算式:①;②;③;④;……认真观察这些算式,并结合你发现的规律,解答下列问题:(1) ; .(2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规律.3、化简:.4、先化简,再求值:,其中.5、观察算式:;;;,…(1)请根据你发现的规律填空:( )2;(2)用含n的等式表示上面的规律: ;(n为正整数)(3)利用找到的规律解决下面的问题:计算:. ---------参考答案-----------一、单选题1、C【分析】由合并同类项可判断A,由积的乘方运算可判断B,C,由同底数幂的除法运算可判断D,从而可得答案.【详解】解:不是同类项,不能合并,故A不符合题意;故B不符合题意;,运算正确,故C符合题意;故D不符合题意;故选C【点睛】本题考查的是合并同类项,积的乘方运算,同底数幂的除法运算,掌握以上基础运算是解本题的关键.2、D【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:把多项式按的降幂排列:,故选:D【点睛】本题考查了多项式的知识,要注意,在排列多项式各项时,要保持其原有的符号.3、C【分析】根据二次二项式的定义得到,求出,得到选项.【详解】解:∵(a﹣2)x3+x2(b+1)+1是关于x的二次二项式,∴,∴,故选:C.【点睛】此题考查多项式的次数及项数的定义,熟记定义是解题的关键.4、C【分析】由图可知:第1个图形需要黑色棋子的个数是2×3-3=3,第2个图形需要黑色棋子的个数是3×4-4=8,第3个图形需要黑色棋子的个数是4×5-5=15,…按照这样的规律摆下去,则第5个图形需要黑色棋子的个数是再计算即可得到答案.【详解】解:∵第1个图形需要黑色棋子的个数是2×3-3=3, 第2个图形需要黑色棋子的个数是3×4-4=8, 第3个图形需要黑色棋子的个数是4×5-5=15, … ∴第5个图形需要黑色棋子的个数是. 故选:C.【点睛】本题考查图形的变化规律,掌握“从具体的实例出发,列出具有相同规律的运算式,从而发现规律”是解题的关键.5、D【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念与合并同类项的法则可判断A,C,D,再利用去括号的法则判断B,从而可得答案.【详解】解:不是同类项,故A不符合题意;故B不符合题意;不是同类项,故C不符合题意;故D符合题意;故选D【点睛】本题考查的是合并同类项,去括号,掌握“同类项的概念及合并同类项的法则,去括号的法则”是解本题的关键.6、C【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,其中n为正整数,依次判断各个式子即可得出结果.【详解】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7
可得出:n+(n+1)+(n+2)+…+(n+2n-2)=(2n-1)2,∴1005+1006+1007+…+3013=200921006+1007+1008+…+3016=20112 ,故选C.【点睛】本题主要考查了数字类的规律探索,解题的关键在于能够根据题意找到规律求解.7、C【分析】根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.【详解】解:∵∴故选C【点睛】本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.8、D【分析】由动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 归纳可得所以每两次移动的结果是往右移动了1个单位长度,结合从而可得答案.【详解】解:动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,则此时对应的数为: 第三次向左移动3厘米,第四次向右移动4厘米,则此时对应的数为: 所以每两次移动的结果是往右移动了1个单位长度, 所以移动第2022次到达点B,则对应的数为: 所以点B在点A点的右侧1011厘米处.故选D【点睛】本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.9、D【分析】根据整式的运算法则逐项检验即可.【详解】解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;B、,原计算错误,故该选项不符合题意;C、,原计算错误,故该选项不符合题意;D、,正确,故该选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键.10、D【分析】由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.【详解】解:第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,∴可以推出第n个图形有,∴第 11 个图形中正方形的个数是个正方形,故选D.【点睛】本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.二、填空题1、(答案不唯一)【详解】根据题意中单项式的系数与次数是2,写出一个单项式即可.例如,故答案为:(答案不唯一)【点睛】本题考查了单项式的定义,单项式的次数与系数,理解单项式的定义是解题的关键.单项式是由数或字母的乘积组成的代数,单独的一个数或一个字母也叫做单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.2、或【分析】根据题意分两种情况讨论:①当腰为2a,底为3a时,②当腰为3a,底为2a时,求出答案.【详解】解:①当腰为2a,底为3a时,根据图形可得:
第一个图形的周长是2×2a+1×3a=4a+1×3a,
第二个图形的周长是2×2a+2×3a=4a+2×3a,
第三个图形的周长是2×2a+3×3a=4a+3×3a,
第四个图形的周长是2×2a+4×3a=4a+4×3a,
第五个图形的周长是2×2a+5×3a=4a+5×3a,
则第n个图形的周长为:4a+n·3a=.
②当腰为3a,底为2a时,根据图形可得:
第一个图形的周长是2×3a+1×2a=6a+1×2a,
第二个图形的周长是2×3a+2×2a=6a+2×2a,
第三个图形的周长是2×3a+3×2a=6a+3×2a,
第四个图形的周长是2×3a+4×2a=6a+4×2a,
第五个图形的周长是2×3a+5×2a=6a+5×2a,
则第n个图形的周长为:6a+n·2a=.
故答案为:或.【点睛】本题考查了图形的变化类问题,通过观察分析得出规律,注意分两种情况讨论解答.3、【分析】根据差+减数=被减数,计算即可得到结果.【详解】解:根据题意得:=,
故答案为:.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4、-23【分析】根据新定义的运算代入数值计算即可得.【详解】解:∵,∴,,.故答案为:﹣23.【点睛】题目主要考查求代数式的值,理解题目中新定义的运算是解题关键.5、【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可.【详解】∵,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.三、解答题1、3【解析】【分析】先去括号,然后合并同类项化简,最后将已知式子的值代入求解即可.【详解】解:,,,,当,时,原式,.【点睛】题目主要考查整式的化简求值,熟练掌握整式的化简方法是解题关键.2、(1),;(2)见解析【解析】【分析】(1)根据题目给出的规律写出和即可;(2)利用平方差公式计算得出答案.【详解】(1),,故答案为:,;(2),∵n为正整数,∴两个连续奇数的平方差是8的倍数.【点睛】此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键.3、【解析】【分析】去括号合并同类项即可.【详解】解:原式.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.4、,2【解析】【分析】先去括号,合并同类项,再将未知数的值代入计算.【详解】解:原式==,当时,原式=2.【点睛】此题考查了整式的化简求值,掌握整式的加减法计算法则是解题的关键.5、(1)7;(2)n•(n+2)+1=(n+1)2;(3).【解析】【分析】(1)利用有理数的混合运算求解;(2)利用题中的等式得到n•(n+2)+1=(n+1)2(n为正整数);(3)先通分得到原式=,再利用(2)中的结论得到原式=,然后约分即可.【详解】解:(1)6×8+1=72;故答案为:7;(2)n•(n+2)+1=(n+1)2(n为正整数);故答案为:n•(n+2)+1=(n+1)2;(3)原式==.【点睛】本题考查了规律型:数字的变化类,根据已知得出数字中的变与不变是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共18页。试卷主要包含了下列计算正确的是,把多项式按的降幂排列,正确的是,下列数字的排列,如果a﹣4b=0,那么多项式2,下列说法正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试精练,共16页。试卷主要包含了下面说法正确的是,下列计算正确的是,下列说法正确的是,下列运算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后测评,共17页。试卷主要包含了下列说法正确的是,下列式子,观察下列各式,下列各式中,计算正确的是等内容,欢迎下载使用。