初中数学北京课改版七年级下册第六章 整式的运算综合与测试随堂练习题
展开京改版七年级数学下册第六章整式的运算课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算正确的是( )
A. B. C. D.
2、下列计算中,正确的是( )
A. B.
C. D.
3、不一定相等的一组是( )
A.2a与a+a B.a2b﹣ba2与0
C.a﹣b与﹣(b﹣a) D.2(a﹣b)与2a﹣b
4、下列各式中,计算正确的是( )
A.(3a)2=3a2 B.-2(a-1)=-2a+1
C.5a2-a2=4a2 D.4a2b-2ab2=2ab2
5、下列说法正确的是( )
A.﹣的系数是﹣5
B.1﹣2ab+4a是二次三项式
C.不属于整式
D.“a,b的平方差”可以表示成(a﹣b)2
6、下列说法中:(1)整数与分数统称为有理数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)多项式是五次二项式;(4)倒数等于它本身的数是;(5)与是同类项,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7、下列表述正确的是( )
A.单项式ab的系数是0,次数是2 B.的系数是,次数是3
C.是一次二项式 D.的项是,3a,1
8、下列说法正确的是( )
A.是单项式 B.0不是单项式
C.是单项式 D.是单项式
9、下列计算正确的是( )
A. B.
C. D.
10、下列说法正确的是( )
A.单项式的次数是3,系数是
B.多项式的各项分别是,,5
C.是一元一次方程
D.单项式与能合并
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有若干个大小形状完全相同的小长方形现将其中4个如图1摆放,构造出一个正方形,其中阴影部分面积为34;其中5个如图2摆放,构造出一个长方形,其中阴影部分面积为100(各个小长方形之间不重叠不留空),则每个小长方形的面积为______.
2、单项式﹣xy2的系数为 _____.
3、已知关于x、y的多项式(a+b)+(a-3)-2(b+2)+2ax+1不含项,则当x=-1时,这个多项式的值为__________.
4、如表,从左到右在每个小格中都填入一个整数、使得任意三个相邻格子所填整数之和都相等,则第2021个格子中的整数是 _____.
﹣1 | a | b | c | 3 | b |
|
| ﹣5 |
| … |
5、在2022年迎新联欢会上,数学老师和同学们做了一个游戏.她在,,三个盘子里分别放了一些小球,小球数依次为,,,记为.游戏规则如下:三个盘子中的小球数,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记为一次操作;次操作后的小球数记为.若,则______,______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)﹣12×2÷(﹣5)﹣(﹣3)2÷[(﹣2)+(﹣1)3];
(2)已知:(x2﹣xy+y2)﹣2A=3(3x2+3xy﹣y2),求A.
2、如图,在长方形ABCD中,AD=8,DC=6,点M是边AB的中点,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动.设运动时间为t秒.
(1)用含t的代数式表示线段PD= ;
(2)求阴影部分的面积(用含t的代数式表示);
(3)当t=5秒时,求出阴影部分的面积.
3、先化简再求值:
(1),其中a=1,b=2.
(2),其中x=.
4、先化简,再求值:,其中,.
5、将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:
(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1= ,S2= ;(不必化简)
(2)由(1)中的结果可以验证的乘法公式是 ;
(3)利用(2)中得到的公式,计算:20212﹣2020×2022.
---------参考答案-----------
一、单选题
1、C
【分析】
结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.
【详解】
A、a2和a不是同类项,不能合并,故本选项错误;
B、ax和ay不是同类项,不能合并,故本选项错误;
C、,计算正确,故本选项正确;
D、(,故本选项错误.
故选:C.
【点睛】
本题考查同底数幂的乘法、幂的乘方以及合并同类项,掌握相关的运算法则是解题的关键.
2、D
【分析】
根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.
【详解】
A. ,故选项A不正确;
B. ,故选项B不正确;
C. ,故选项C不正确;
D. ,故选项D正确.
故选:D.
【点睛】
本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.
3、D
【分析】
根据整式的运算计算即可.
【详解】
A. a+a=2a,故选项A一定相等;
B. a2b﹣ba2=0,故选项B一定相等;
C.﹣(b﹣a)=a﹣b,故选项C一定相等;
D. 2(a﹣b)=2a﹣2b,故选项D不一定相等;
故选:D
【点睛】
此题考查了整式的运算,掌握整式的运算法则和顺序是解答此题的关键.
4、C
【分析】
分别利用合并同类项,去括号法则,积的乘方运算法则分析得出即可.
【详解】
解:A、(3a)2=9a2,故选项错误,不符合题意;
B、-2(a-1)= -2a+2,故选项错误,不符合题意;
C、5a2-a2=4a2,故选项正确,符合题意;
D、4a2b和2ab2不是同类项,所以不能合并,故选项错误,不符合题意.
故选:C.
【点睛】
此题考查了合并同类项,积的乘方运算,解题的关键是熟练掌握合并同类项,去括号法则,积的乘方运算法则.
5、B
【分析】
根据代数式,整式,单项式与多项式的相关概念解答即可.
【详解】
解:A、﹣的系数是﹣,原说法错误,故此选项不符合题意;
B、1﹣2ab+4a是二次三项式,原说法正确,故此选项符合题意;
C、属于整式,原说法错误,故此选项不符合题意;
D、“a,b的平方差”可以表示成a2﹣b2,原说法错误,故此选项不符合题意;
故选:B.
【点睛】
此题考查了代数式,整式,单项式与多项式,解题的关键是掌握单项式和多项式的相关定义,多项式的次数是多项式中次数最高项的次数,多项式的项包括符号.
6、C
【分析】
根据有理数的定义及其分类标准,和绝对值、倒数的意义,多项式的定义,同类项的定义进行辨析即可.
【详解】
解:(1)整数与分数统称为有理数,说法正确;
(2)如果两个数的绝对值相等,那么这两个数相等或互为相反数,原说法错误;
(3)多项式是三次二项式,原说法错误;
(4)倒数等于它本身的数是,说法正确;
(5)与是同类项,说法正确;
综上,说法正确的有(1)(4)(5),共3个,
故选:C.
【点睛】
本题考查了多项式,倒数,有理数以及同类项,掌握相关定义是解答本题的关键.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项;多项式的次数是多项式中次数最高的单项式的次数;乘积是1的两个数互为倒数.
7、C
【分析】
直接利用单项式的次数与系数以及多项式的特点分别分析得出答案.
【详解】
解:A.单项式ab的系数是1,次数是2,故此选项不合题意;
B.的系数是,次数是5,故此选项不合题意;
C.x−1是一次二项式,故此选项符合题意;
D.的项是,3a,−1,故此选项不合题意;
故选:C.
【点睛】
此题主要考查了多项式和单项式,正确掌握单项式的次数确定方法是解题关键.
8、C
【分析】
根据单项式的定义逐个判断即可.
【详解】
解:A、是分式,不是整式,不是单项式,故本选项不符合题意;
B、0是单项式,故本选项不符合题意;
C、是单项式,正确,故本选项符合题意;
D、是多项式,不是单项式,故本选项不符合题意;
故选:C.
【点睛】
本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.
9、D
【分析】
根据完全平方公式逐项计算即可.
【详解】
解:A.,故不正确;
B.,故不正确;
C.,故不正确;
D.,正确;
故选D
【点睛】
本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.
10、C
【分析】
根据单项式的次数和系数的定义、多项式的项的定义、一元一次方程的定义和同类项的定义逐项判断即可.
【详解】
A. 单项式的次数是4,系数是,故该选项错误,不符合题意;
B. 多项式的各项分别是、、-5,故该选项错误,不符合题意;
C. 是一元一次方程,正确,符合题意;
D. 单项式和不是同类项,不能合并,故该选项错误,不符合题意.
故选:C.
【点睛】
本题考查单项式的次数和系数、多项式的项、一元一次方程和同类项.正确掌握各定义是解答本题的关键.
二、填空题
1、8
【分析】
设长方形的长为a,宽为b,由图1可得,(a+b)2-4ab=34,由图2可得,(2a+b)(a+2b)-5ab=100,再利用整体思想进行变形求解即可.
【详解】
解:设长方形的长为a,宽为b,
由图1可得,(a+b)2-4ab=34, 即a2+b2=2ab+34①,
由图2可得,(2a+b)(a+2b)-5ab=100, 即a2+b2=50②,
由①②得,2ab+34=50, 所以ab=8,
即长方形的面积为8,
故答案为:8.
【点睛】
本题考查的是完全平方公式,多项式乘以多项式在几何图形中的应用,熟练的应用整式的乘法运算解决问题是解本题的关键.
2、
【分析】
根据单项式的系数的定义即可求解.
【详解】
单项式﹣xy2的系数为
故答案为:.
【点睛】
此题主要考查单项式的系数,解题的关键是熟知单项式的系数的定义:指单项式中字母前面的数.
3、-6
【分析】
根据多项式里面不含项,直接令项的系数为0,求出、的值,再将、、的值代入多项式中,求出多项式的值即可.
【详解】
解:多项式里面不含项,
,,即,,
原多项式化简为:,
将x=-1代入多项式中,求得多项式的值为:,
故答案为:.
【点睛】
本题主要是考查了整式加减中的无关项问题,解题的关键在于熟练掌握整式的加减计算法则以及不含某项即某项的系数为0.
4、3
【分析】
根据三个相邻格子的整数的和相等列式求出a=3、c=﹣1,再根据第9个数是﹣5可得b=﹣5,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴﹣1+a+b=a+b+c,
解得:c=﹣1,
a+b+c=b+c+3,
解得:a=3,
∴数据从左到右依次为﹣1、3、b、﹣1、3、b,
∴第9个数与第三个数相同,即b=﹣5,
∴每3个数“﹣1、3、﹣5”为一个循环组依次循环,
∵2021÷3=673……2,
∴第221个格子中的整数与第2个格子中的数相同,为3.
故答案为:3
【点睛】
本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.
5、(6,8,13) (9,8,10)
【分析】
根据题意先列出前10个数列,得出从G5开始每3次为一个周期循环的规律,据此可得答案.
【详解】
解:∵G0=(3,5,19),
∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),
G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),
G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),
……
∴从G5开始每3次为一个周期循环,
∵(2022−4)÷3=672……2,
∴G2022=G6=(9,8,10),
故答案为:(6,8,13),(9,8,10).
【点睛】
本题考查了有理数混合运算与数字的规律,解题的关键是弄清题意得出从G5开始每3次为一个周期循环的规律.
三、解答题
1、(1)9;(2)A=﹣4x2﹣5xy+2y2.
【解析】
【分析】
(1)根据有理数的乘方运算、乘除运算以及加减运算即可求出答案.
(2)根据等式的性质以及整式的加减运算法则即可求出答案.
【详解】
解:(1)原式=﹣12××(﹣)﹣9÷(﹣2﹣1)
=6﹣9÷(﹣3)
=6+3
=9.
(2)∵2A=(x2﹣xy+y2)﹣3(3x2+3xy﹣y2)
=x2﹣xy+y2﹣9x2﹣9xy+3y2
=﹣8x2﹣10xy+4y2,
∴A=﹣4x2﹣5xy+2y2.
【点睛】
此题主要考查有理数的混合运算与整式的加减,解题的关键是熟知其运算法则.
2、(1);(2);(3)
【解析】
【分析】
(1)根据路程等于速度乘以时间即可表示出,根据线段的差即可求得;
(2)根据即可求得求阴影部分的面积
(3)将t=5代入(2)的代数式中即可求解
【详解】
解:(1) AD=8,设运动时间为t秒,动点P以每秒1个单位长度的速度从点A出发沿AD向终点D运动
,
故答案为:
(2)四边形是长方形
点M是边AB的中点,
(3)当时,
【点睛】
本题考查了列代数式,代数式求值,表示出PD是解题的关键.
3、(1),2;(2),.
【解析】
【分析】
(1)先去括号,再计算整式的加减,然后将的值代入计算即可得;
(2)先去括号,再计算整式的加减,然后将的值代入计算即可得.
【详解】
解:(1)原式,
,
将代入得:原式;
(2)原式,
,
将代入得:原式.
【点睛】
本题考查了整式加减中的化简求值,熟练掌握整式的加减运算法则是解题关键.
4、,
【解析】
【分析】
先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.
【详解】
解:原式
,
将,代入得:.
【点睛】
本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.
5、(1);(2);(3)1.
【解析】
【分析】
(1)根据图形以及正方形和长方形的面积计算公式即可解答;
(2)由(1)中所得的S₁和S₂的面积相等即可解答;
(3)根据(2)中的公式,将2020×2022写成(2021-1)×(2021+1),然后按照平方差公式进行化简,再按照有理数的混合运算计算出即可.
【详解】
解:(1)根据图形以及正方形和长方形的面积计算公式可得:S₁=a2﹣b2,S₂=(a+b)(a﹣b)
故答案是:a2﹣b2,(a+b)(a﹣b);
(2)由(1)所得结论和面积相等,则可以验证的乘法公式是a2﹣b2=(a+b)(a﹣b).
故答案是:(a+b)(a﹣b)=a2﹣b2.
(3)运用(2)所得的结论可得:
20212﹣2020×2022
=20212﹣(2021﹣1)×(2021+1)
=20212﹣(20212﹣1)
=20212﹣20212+1
=1.
【点睛】
本题考查了平方差公式的几何背景及其在简算中的应用,灵活利用数形结合思想以及掌握平方差公式的形式是解答本题的关键.
七年级下册第六章 整式的运算综合与测试单元测试课时作业: 这是一份七年级下册第六章 整式的运算综合与测试单元测试课时作业,共17页。试卷主要包含了下列计算正确的是,下列叙述中,正确的是,下列数字的排列,下列运算正确的是,已知,,则等内容,欢迎下载使用。
数学七年级下册第六章 整式的运算综合与测试综合训练题: 这是一份数学七年级下册第六章 整式的运算综合与测试综合训练题,共19页。试卷主要包含了下列结论中,正确的是,下列计算正确的是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题: 这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试同步练习题,共15页。试卷主要包含了下列数字的排列,如果a﹣4b=0,那么多项式2,下列运算正确的是,下列叙述中,正确的是,若,,,则的值为等内容,欢迎下载使用。