初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试当堂达标检测题,共15页。试卷主要包含了下列运算正确的是,用“※”定义一种新运算,下列各式运算的结果可以表示为等内容,欢迎下载使用。
京改版七年级数学下册第六章整式的运算同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:x2﹣2x﹣5=0,当y=1时,ay3+4by+3的值等于4,则当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)的值等于( )A.1 B.9 C.4 D.62、下列计算正确的是( )A.a+b=ab B.7a+a=7a2C.3x2y﹣2yx2=x2y D.3a﹣(a﹣b)=2a﹣b3、下列说法正确的是( )A.0不是单项式 B.单项式xy的次数是1C.单项式的系数是 D.多项式的一次项次数是—14、下列运算正确的是( )A. B.C. D.5、数左手手指,1为大拇指,数到第2011时对应的手指是( )A.无名指 B.食指 C.中指 D.大拇指6、如果代数式的值为7,那么代数式的值为( )A. B.2 C. D.07、用大小相等的小正方形按一定规律拼成下列图形,则第个图形中正方形的个数是( )
A.10 B.240 C.428 D.5728、用“※”定义一种新运算:对于任何有理数a和b,规定.如,则的值为( )A.-4 B.8 C.4 D.-89、下列各式运算的结果可以表示为( )A. B.C. D.10、下列说法正确的是( )A.是单项式 B.0不是单项式C.是单项式 D.是单项式第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若将单项式﹣xy2的系数用字母a表示、次数用字母b表示,则ab=_____.2、、两个数在数轴上的位置如图所示,则化简的结果是________.3、如果是个完全平方式,那么的值是______.4、若式子x2+16x+k是一个完全平方式,则k=______.5、如果x2-mx+16是一个完全平方式,那么m的值为________.三、解答题(5小题,每小题10分,共计50分)1、已知多项式,.(1)化简:;(2)当,时,求的值.2、计算:3、先化简,再求值:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2),其中x=﹣2,y=.4、化简:.5、先化简,再求值: ;其中,. ---------参考答案-----------一、单选题1、D【分析】根据题意得到a+4b=1,x2﹣2x=5,当y=﹣1时可得出﹣2(x+2by)+(x2﹣ay3)=﹣2x+4b+x2+a,最后将x2﹣2x=5,a+4b=1代入该式即可求出答案.【详解】解:当y=1时,ay3+4by+3=a+4b+3=4,∴a+4b=1,∵x2﹣2x﹣5=0, ∴x2﹣2x=5,当y=﹣1时,﹣2(x+2by)+(x2﹣ay3)=﹣2x﹣4by+x2﹣ay3=﹣2x+4b+x2+a∵a+4b=1,x2﹣2x=5,∴﹣2x+4b+x2+a=﹣2x+x2+a+4b=5+1=6.故选:D【点睛】本题考查了求代数式的值,根据题意得到a+4b=1,x2﹣2x=5,并整体代入是解题关键.2、C【分析】根据整式的加减运算法则和去括号法则即可求出答案.【详解】解:A、a与b不是同类项,故不能合并,故A不符合题意.B、7a+a=8a,故B不符合题意.C、3x2y﹣2yx2=x2y,故C符合题意.D、3a﹣(a﹣b)=3a﹣a+b=2a+b,故D不符合题意.故选C.【点睛】本题主要考查了整式的加减计算和去括号,解题的关键在于能够熟练掌握相关计算法则.3、C【分析】根据单项式的判断,单项式的系数与次数,多项式的次数、项数等概念逐项分析判断即可【详解】解:A. 0是单项式,故该选项不正确,不符合题意; B. 单项式xy的次数是2,故该选项不正确,不符合题意;C. 单项式的系数是,故该选项正确,符合题意;D. 多项式的一次项次数是2,故该选项不正确,不符合题意;故选C【点睛】本题考查了单项式的判断,单项式的系数与次数,多项式的次数、项数等概念,掌握以上知识是解题的关键.单项式中,所有字母的指数和叫单项式的次数,数字因数叫单项式的系数,单项式中所有字母的指数的和叫做它的次数,通常系数不为0,应为有理数, 多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.4、D【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确;
故选:D.【点睛】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键.5、C【分析】根据题意可得::第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,从而得到2011是从2开始的第2011﹣1=2010个数,可得2011是第503个循环组的第2个数,即可求解.【详解】解:根据题意得:第一次是五个数,以后每一次都是四个数,所以先减去1,可得每两个循环是“食指、中指、无名指、小拇指、无名指、中指、食指、大拇指”,∵2011是从2开始的第2011﹣1=2010个数,∴2010÷8=251…2,∴2011是第252个循环组的第2个数,∴第2011与3的位置相同,即中指的位置.故选:C【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键.6、D【分析】根据题意可得,变形为,将其代入代数式求解即可.【详解】解:∵,∴,∴,∴,故选:D.【点睛】题目主要考查求代数式的值,理解题意,将已知式子变形是解题关键.7、D【分析】由第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,可以推出第n个图形有,由此求解即可.【详解】解:第一个图形中有:个正方形;第二个图形中有:个正方形,第三个图形有:个正方形,∴可以推出第n个图形有,∴第 11 个图形中正方形的个数是个正方形,故选D.【点睛】本题主要考查了图形类的规律探索,解题的挂件在于能够根据题意找到规律求解.8、A【分析】根据定义的新运算法则代入计算即可.【详解】解:,∴,故选:A.【点睛】题目主要考查计算代数式的值,理解题目中心定义的运算是解题关键.9、B【分析】分析对每个选项进行计算,再判断即可.【详解】A选项:,故A错误;B选项:,故B正确;C选项:,故C错误;D选项:,故D错误.故选B.【点睛】考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.10、C【分析】根据单项式的定义逐个判断即可.【详解】解:A、是分式,不是整式,不是单项式,故本选项不符合题意;B、0是单项式,故本选项不符合题意;C、是单项式,正确,故本选项符合题意;D、是多项式,不是单项式,故本选项不符合题意;故选:C.【点睛】本题考查了单项式的定义,能熟记单项式的定义是解此题的关键,注意:表示数与数或数与字母的积的形式,叫单项式,单独一个数或单独一个字母也是单项式.二、填空题1、-1【分析】先根据单项式次数和次数的定义求出a、b的值,然后代值计算即可.【详解】解:∵单项式﹣xy2的系数用字母a表示、次数用字母b表示,∴a=﹣1,b=3,代入运算即可.∴ab=(﹣1)3=﹣1.故答案为:﹣1.【点睛】本题主要考查了单项式次数和系数的定义,代数式求值,有理数的乘方,熟知单项式的系数和次数的定义是解题的关键:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数.2、a【分析】由数轴得,,,去绝对值有,从而得出结果.【详解】解:,故答案为:.【点睛】本题考查了数轴,去绝对值.解题的关键与难点在于判断绝对值里数值的正负.3、-2或6【分析】由题意直接利用完全平方公式的结构特征判断即可求出m的值.【详解】解:∵是个完全平方式,∴,解得:-2或6.故答案为:-2或6.【点睛】本题主要考查完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4、64【分析】根据完全平方公式解答即可.【详解】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.5、±8【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】解:∵x2-mx+16=x2-mx+42,∴m=±2×4,解得m=±8.故答案为:±8.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.三、解答题1、(1);(2)0【解析】【分析】(1)把,代入化简即可;(2)把,代入(1)中化简出的式子中计算即可.【详解】(1);(2),,.【点睛】本题考查整式的化简求值,掌握整式的运算法则与运算顺序是解题的关键.2、【解析】【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:==.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a2±2ab+b2;平方差公式是(a+b)(a-b)=a2-b2.3、x2,4【解析】【分析】原式去括号,合并同类项进行化简,然后再代入求值.【详解】解:(3x2﹣xy+2y2)﹣2(x2﹣xy+y2)=3x2﹣xy+2y2﹣2x2+xy﹣2y2=x2,把x=﹣2代入得,原式=(﹣2)2=4.【点睛】本题主要考查整式的化简,关键是要牢记去括号的法则和合并同类项的法则.4、【解析】【分析】去括号合并同类项即可.【详解】解:原式.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.5、x2y+5xy2,42.【解析】【分析】先运用去括号法则去括号,然后合并同类项,化简整式,最后代入求值即可.【详解】解:原式=4x2y-xy2-3x2y+6xy2=x2y+5xy2.当x=3,y=-2时,原式=32(-2)+53(-2)2=-18+60=42.【点睛】本题考查了整式加减的化简求值.去括号时应注意:①不要漏乘;②括号前面是“-”,去括号后括号里面的各项都要变号.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试课后作业题,共16页。试卷主要包含了下列式子正确的,不一定相等的一组是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中数学第六章 整式的运算综合与测试单元测试当堂检测题,共16页。试卷主要包含了下列结论中,正确的是,下列运算正确的是,不一定相等的一组是,下列计算中,正确的是等内容,欢迎下载使用。
这是一份数学第六章 整式的运算综合与测试练习,共17页。试卷主要包含了下列结论中,正确的是,下列运算中,正确的是,下列运算正确的是等内容,欢迎下载使用。