![2022年京改版七年级数学下册第七章观察、猜想与证明专项测评试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12696270/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第七章观察、猜想与证明专项测评试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12696270/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版七年级数学下册第七章观察、猜想与证明专项测评试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12696270/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第七章 观察、猜想与证明综合与测试精练
展开
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共18页。
京改版七年级数学下册第七章观察、猜想与证明专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,是真命题的是( )A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直2、下列说法中正确的个数是( )(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.43、如图:O为直线AB上的一点,OC为一条射线,OD平分,OE平分,图中互余的角共有( )A.1对 B.2对 C.4对 D.6对4、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'5、下列有关“线段与角”的知识中,不正确的是( )A.两点之间线段最短 B.一个锐角的余角比这个角的补角小C.互余的两个角都是锐角 D.若线段,则是线段的中点6、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°7、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )A.138° B.128° C.52° D.152°8、已知一个角等于它的补角的5倍,那么这个角是( )A.30° B.60° C.45° D.150°9、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个10、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,那么的余角是_____.2、若∠α=23°30′,则∠α的补角的度数为 _____.3、已知∠1与∠2互余,∠3与∠2互余,则∠1_____∠3.(填“>”,“=”或“<”)4、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.5、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.2、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.3、如图,直线、相交于点,是平分线,,求度数.4、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.5、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数. ---------参考答案-----------一、单选题1、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.2、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.3、C【分析】根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.【详解】解:∵OD平分,OE平分,∴,又∵,即,∴,,,,∴互余的角共有4对.故选:C.【点睛】此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.4、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.5、D【分析】根据线段的性质及余角补角的定义解答.【详解】解:两点之间线段最短,故A选项不符合题意;一个锐角的余角比这个角的补角小,故B选项不符合题意;互余的两个角都是锐角,故C选项不符合题意;若线段,则不一定是线段的中点,故D选项符合题意;故选:D.【点睛】此题考查线段的性质,余角与补角的定义,熟记定义及线段的性质是解题的关键.6、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.7、B【分析】根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.【详解】解:如图.∵l1//l2,∴∠1=∠3=52°.∵∠2与∠3是邻补角,∴∠2=180°﹣∠3=180°﹣52°=128°.故选:B.【点睛】本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.8、D【分析】列方程求出这个角即可.【详解】解:设这个角为x,列方程得:x=5(180°−x)解得x=150°.故选:D.【点睛】本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.9、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.10、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.二、填空题1、【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】∵,
∴的余角为:.
故答案为:.【点睛】此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.2、156°30′【分析】如果两个角的和是180°,则这两个角互为补角.由此定义进行求解即可.【详解】解:∵∠α=23°30′,∴∠α的补角=180°﹣∠α=23°30′=156°30',故答案为:156°30'.【点睛】本题考查补角的计算,熟练掌握两个角互补的定义,并能准确计算是解题的关键.3、=【分析】根据等(同)角的余角相等解答即可.【详解】解:∵∠1与∠2互余,∠3与∠2互余,∴∠1=∠3,故答案为:=.【点睛】本题考查余角,熟知同(等)角的余角相等是解答的关键.4、①【分析】根据相交线与平行线中的一些概念、性质判断,得出结论.【详解】①等角的余角相等,故正确;②中,需要前提条件:过直线外一点,故错误;③中,相等的角不一定是对顶角,故错误;④中,仅当两直线平行时,同位角才相等,故错误;⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.故答案为:①.【点睛】本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.5、①②④【分析】根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;∵三角板是直角三角板,∴∠2+∠4=180°-90°=90°,∵∠3=∠4,∴∠2+∠3=90°,故③不正确.综上所述,正确的是①②④.故答案为:①②④.【点睛】本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.三、解答题1、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.【解析】【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E,∴∠B=∠E.【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.2、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.3、77°【解析】【分析】由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.【详解】解:∵OE是∠AOD的平分线,∠AOC=26°,∴∠AOD=180°-∠AOC=154°,∴∠AOE=∠AOD=77°.【点睛】本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.4、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.5、(1);(2)【解析】【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1) ∠AOC:∠AOD=3:7, OE平分∠BOD, (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
相关试卷
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共22页。试卷主要包含了下列说法正确的个数是,若的补角是150°,则的余角是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试当堂达标检测题,共22页。试卷主要包含了若∠α=55°,则∠α的余角是,下列命题中,为真命题的是,如图,直线AB∥CD,直线AB,下列命题中,真命题是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时作业,共21页。试卷主要包含了下列命题中,是真命题的是,下列命题中是真命题的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)