数学七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试一课一练,共24页。试卷主要包含了如图,,交于点,,,则的度数是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法不正确的是( )A.两点确定一条直线B.经过一点只能画一条直线C.射线AB和射线BA不是同一条射线D.若∠1+∠2=90°,则∠1与∠2互余2、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).A. B.C. D.3、对于命题“如果,那么.”能说明它是假命题的反例是( )A. B.,C., D.,4、下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°6、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个7、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°8、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠49、如所示各图中,∠1与∠2是对顶角的是( )A. B. C. D.10、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD平分,,,要使,则______°.2、指出图中各对角的位置关系:(1)∠C和∠D是_____角;(2)∠B和∠GEF是____角;(3)∠A和∠D是____角;(4)∠AGE和∠BGE是____角;(5)∠CFD和∠AFB是____角.3、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.4、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°. 5、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____三、解答题(5小题,每小题10分,共计50分)1、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)∠ABC=∠1 (① )∴∠ABC=60°(等量代换)又∵∠2=120°(已知)∴(② )+∠2=180°(等式的性质)∴AB∥CD (③ )又∵∠2+∠BCD=(④ °)∴∠BCD=60°(等式的性质)∵∠D=60°(已知)∴∠BCD=∠D (⑤ )∴BC∥DE (⑥ )2、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.解:∵∠AOE=40°(已知)∴∠AOF=180°﹣ (邻补角定义)=180°﹣ °= °∵OC平分∠AOF(已知)∴∠AOC∠AOF( )∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC( )=180°﹣90°﹣ °= °3、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.4、如图直线,直线与分别和交于点交直线b于点C.(1)若,直接写出 ;(2)若,则点B到直线的距离是 ;(3)在图中直接画出并求出点A到直线的距离.5、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.(1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .(2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由. ---------参考答案-----------一、单选题1、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A、两点确定一条直线,说法正确,不符合题意;B、过一点可以画无数条直线,说法错误,符合题意;C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B.【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.2、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A、+=180°−90°=90°,互余;B、+=60°+30°+45°=135°;C、根据同角的余角相等,可得=;D、+=180°,互补;故选:C.【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.3、A【分析】根据假命题的概念、角的计算解答.【详解】解:当时,,但,命题“如果,那么”是假命题,故选:A.【点睛】本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:
∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.7、C【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.8、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.9、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.10、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF,∴∠A=∠CGB=41°,∵ABCD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.二、填空题1、20【分析】利用角平分线的定义求解再由可得再列方程求解即可.【详解】解: BD平分,, 由, 而, 解得: 所以当时,,故答案为:【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.2、同旁内 同位 内错 邻补 对顶 【分析】根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可.【详解】解:(1)∠C和∠D是同旁内角;(2)∠B和∠GEF是同位角;(3)∠A和∠D是内错角;(4)∠AGE和∠BGE是邻补角;(5)∠CFD和∠AFB是对顶角;故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶.【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义.3、18°度【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4、120【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.5、【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.三、解答题1、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【解析】【分析】先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.【详解】解∵∠1=60°(已知)∠ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换),又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),∴AB∥CD (同旁内角互补,两直线平行),又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质),∵∠D=60°(已知),∴∠BCD=∠D (等量代换),∴BC∥DE (内错角相等,两直线平行),故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.2、角平分线的定义,平角的定义,【解析】【分析】先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.【详解】解:∵∠AOE=40°(已知)∴∠AOF=180°﹣(邻补角定义)=180°﹣40°=140°∵OC平分∠AOF(已知)∴∠AOC∠AOF(角平分线的定义)∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)=180°﹣90°﹣70°=20°故答案为:角平分线的定义,平角的定义,【点睛】本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.3、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.【解析】【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E,∴∠B=∠E.【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.4、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.【解析】【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵,∴,∵,,∴,故答案为:;(2)∵,∴点B到直线AC的距离为线段,故答案为:4;(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,∵,∴为直角三角形, ∴,即,解得:,∴点A到直线BC的距离为.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.5、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析【解析】【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MR∥NP.如题图1∵AB∥CD,∴∠EMB=∠END,∵MR平分∠EMB,NP平分∠EBD,∴,∴∠EMR=∠ENP,∴MR∥BP;故答案为MR∥BP;(2)结论为:MR∥NP.如题图2,∵AB∥CD,∴∠AMN=∠END,∵MR平分∠AMN,NP平分∠EBD,∴∴∠RMN=∠ENP,∴MR∥NP;(3)结论为:MR⊥NP.如图,设MR,NP交于点Q,过点Q作QG∥AB,∵AB∥CD,∴∠BMN+∠END=180°,∵MR平分∠BMN,NP平分∠EBD,∴,∴∠BMR+∠NPD=,∵GQ∥AB,AB∥CD,∴GQ∥CD∥AB,∴∠BMQ=∠GQM,∠GQN=∠PND,∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,∴MR⊥NP,【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列命题中,真命题是,下列命题是假命题的有等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了如图,下列命题中,为真命题的是等内容,欢迎下载使用。