初中北京课改版第七章 观察、猜想与证明综合与测试同步测试题
展开
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试同步测试题,共22页。试卷主要包含了若∠α=55°,则∠α的余角是,如图,不能推出a∥b的条件是,下列说法不正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点在直线上,,若,则的大小为( )A.30° B.40° C.50° D.60°2、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s3、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠44、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°6、若∠α=55°,则∠α的余角是( )A.35° B.45° C.135° D.145°7、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°8、一个角的余角比这个角的补角的一半小40°,则这个角为( )A.50° B.60° C.70° D.80°9、下列说法不正确的是( )A.两点确定一条直线B.经过一点只能画一条直线C.射线AB和射线BA不是同一条射线D.若∠1+∠2=90°,则∠1与∠2互余10、下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,CE平分,,则______°.2、如图,BD平分,,,要使,则______°.3、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.4、已知一个角等于70°38′,则这个角的余角等于______.5、如图,已知ABCD,,,则____.三、解答题(5小题,每小题10分,共计50分)1、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.解:∵,∴( )∵平分,平分.∴, ( )∵∴( )∵∴( )2、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点(1)若∠MAB=∠QCB=20°,则B的度数为 度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系 3、如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,求∠DOE和∠BOD;(2)设∠COE=α,∠BOD=β,试探究α与β之间的数量关系.4、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC( ),∴∠B+∠DCB=180°( ).∵∠B=( )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=( )(垂直的定义).∴∠2=( ).∵AB∥DC(已知),∴∠1=( )( ).∵AC平分∠DAB(已知),∴∠DAB=2∠1=( )(角平分线的定义).∵AB∥DC(己知),∴( )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB= .5、直线、相交于点,平分,,,求与的度数. ---------参考答案-----------一、单选题1、D【分析】根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.【详解】解:∵,∴∠BOC=180°-150°=30°,∵,即∠COD=90°,∴∠BOD=90°-30°=60°,故选:D【点睛】本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.2、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.3、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.4、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.5、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:
∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A.【点睛】本题考查了余角的定义,熟记定义是解题关键.7、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.9、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A、两点确定一条直线,说法正确,不符合题意;B、过一点可以画无数条直线,说法错误,符合题意;C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B.【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.10、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.二、填空题1、65【分析】由平行线的性质先求解再利用角平分线的定义可得答案.【详解】解: , , CE平分, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.2、20【分析】利用角平分线的定义求解再由可得再列方程求解即可.【详解】解: BD平分,, 由, 而, 解得: 所以当时,,故答案为:【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.3、40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】∵AD∥BC,∠B=40°,∴∠EAD=∠B=40°,∵AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.4、19°22′【分析】根据余角的定义解决此题.【详解】解:∵90°-70°38'=19°22′.∴根据余角的定义,这个角的余角等于19°22′.故答案为:19°22′.【点睛】本题主要考查了余角的定义,熟练掌握余角的定义是解决本题的关键.5、95°【分析】过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点E作EF∥AB,∵EF//AB,∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,∵EF//AB,AB//CD,∴EF//CD,∴∠FEC=∠DCE,∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.三、解答题1、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.【解析】【分析】利用平行线的性质定理和判定定理解答即可.【详解】解:∵AB∥CD,∴∠AME=∠CNE.(两直线平行,同位角相等),∵MP平分∠AME,NQ平分∠CNE,∴∠1=∠AME,=∠CNE.( 角平分线的定义),∵∠AME=∠CNE,∴∠1=∠2.(等量代换),∵∠1=∠2,∴MP∥NQ.(同位角相等,两直线平行).故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.【点睛】此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.2、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°【解析】【分析】(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.【详解】解:(1)作 ,∵MN//PQ,∴,∴ ,∴ ;(2)①如图所示,②过点F作 ,∴ ,∴ ,∵ ,∴ ,∵∴ ,∴ ,∵ ,∴ ;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∴∠BCQ=180°−my°,由(1)知,∠ABC=mx°+180°−my°,∴y°−x°=,∵MNPQ,∴∠MAE=∠DGP=x°,则∠CDA=∠DCP−∠DGC=y°−x°=,即m∠CDA+∠ABC=180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.3、(1),;(2).【解析】【分析】(1)根据互余的性质求出,根据角平分线的性质求出,结合图形计算即可;(2)根据互余的性质用表示,根据角平分线的性质求出,结合图形列式计算即可.【详解】解:(1)∵与互余,,∴,∵OE平分,∴,∴,∴,;(2)∵,且与互余,∴,∵OE平分,∴,∴,解得:.【点睛】本题考查了余角及角平分线的性质,角的计算,理解两个性质并准确识图,理清图中各角度之间的关系是解题的关键.4、见解析.【解析】【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),∴(两直线平行,同旁内角互补).∵(已知),∴.∵(已知),∴(垂直的定义).∴.∵(已知),∴(两直线平行,内错角相等).∵平分(已知),∴(角平分线的定义).∵(己知),∴(两条直线平行,同旁内角互补).∴.【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.5、∠3=50°,∠2=65°.【解析】【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共20页。试卷主要包含了若的补角是125°,则的余角是,下列语句中,错误的个数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共18页。试卷主要包含了如图,能判定AB∥CD的条件是,以下命题是假命题的是,下列命题中是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共26页。试卷主要包含了下列语句中叙述正确的有,如图,直线AB,如图,能判定AB∥CD的条件是,如图,,交于点,,,则的度数是等内容,欢迎下载使用。