北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题,共23页。试卷主要包含了下列语句中,错误的个数是,下列命题是真命题的是,如图,C等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°2、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°3、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )A.个 B.个 C.个 D.个4、下列语句中,错误的个数是( )①直线AB和直线BA是两条直线;②如果,那么点C是线段AB的中点;③两点之间,线段最短;④一个角的余角比这个角的补角小.A.1个 B.2个 C.3个 D.4个5、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).A. B.C. D.6、下列命题是真命题的是( )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角7、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A.1个 B.2个 C.3个 D.4个8、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )A.38° B.42° C.48° D.52°9、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b10、如图,下列给定的条件中,不能判定的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.2、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.3、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.4、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.5、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.
三、解答题(5小题,每小题10分,共计50分)1、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.2、直线,直线分别交、于点、,平分.(1) 如图1,若平分,则与的位置关系是 .(2) 如图2,若平分,则与有怎样的位置关系?请说明理由.(3) 如图3,若平分,则与有怎样的位置关系?请说明理由.3、如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.则∠BON=______°.(2)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?4、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.5、已知如图,AO⊥BC,DO⊥OE.(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠AOD的度数. ---------参考答案-----------一、单选题1、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:
∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.3、B【分析】根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.【详解】解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;②相等的角不一定是对顶角,故为假命题;③能被2整除的数不一定能被4整除,故为假命题;④两点之间线段最短,故为真命题;故选B.【点睛】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.4、B【分析】根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.【详解】解:①直线AB和直线BA是同一条直线,故该项符合题意;②如果,那么点C不一定是线段AB的中点,故该项符合题意;③两点之间,线段最短,故该项不符合题意;④一个角的余角比这个角的补角小,故该项不符合题意,故选:B.【点睛】此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.5、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A、+=180°−90°=90°,互余;B、+=60°+30°+45°=135°;C、根据同角的余角相等,可得=;D、+=180°,互补;故选:C.【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.6、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.7、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确; ②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误. 故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.8、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.9、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.10、A【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.二、填空题1、【分析】根据,可得,再根据对顶角相等即可求出的度数.【详解】解:∵,∴∴∵∴故答案为:【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.2、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.3、【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.4、【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,又∵∠1比∠2大4°,∴,∴,∴;故答案是.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.5、##【分析】如图,标注字母,过作 再证明证明从而可得答案.【详解】解:如图,标注字母,过作
∠1=52°, 故答案为:【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.三、解答题1、61.5°【解析】【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.2、(1);(2),理由见解析;(3),理由见解析【解析】【分析】(1)根据两直线平行,同位角相等可得,根据角平分线的意义可得,进而可得,即可判断;(2)根据两直线平行,内错角相等,角平分线的意义可得,即可判断;(3)设交于点,过点作根据两直线平行,同旁内角互补,角平分线的意义,可得,进而可得,进而判断.【详解】(1)如题图1,平分,平分.;(2)如题图2,平分,平分.;(3)如图,设交于点,过点作,平分,平分.;【点睛】本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.3、(1)35;(2)5.5或23.5【解析】【分析】(1)先计算∠MOB的度数,再利用互余原理计算即可;(2)分ON的反向延长线平分∠AOC和ON所在射线平分∠AOC两种情形计算,先计算需要旋转的度数,除以旋转的速度即可得到旋转需要的时间.【详解】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°,故答案为:35°;(2)∵∠BOC=110°∴∠AOC=70°,当射线NO的延长线恰好平分锐角∠AOC时,∵∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,10t=55,故t=5.5.当ON平分∠AOC时,逆时针旋转的角度为:360°-90°-35°=235°,由题意得,10t=235,∴t=23.5;故t=5.5秒或t=23.5秒.【点睛】本题考查了旋转的意义,角的平分线,互余的性质,分类的思想,熟练掌握性质,正确进行分类是解题的关键.4、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【解析】【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC平分∠BOE,∴∠COE=∠BOC,∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD;∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF;(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC,∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COE,∵OF⊥OC,∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF.【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.5、(1),;(2).【解析】【分析】(1)先根据垂直可得,再根据角的和差即可得;(2)根据(1)的结论即可得出答案.【详解】解:(1),,,,即图中有关角的等量关系有,;(2)由(1)已得:,,.【点睛】本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.
相关试卷
这是一份七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列说法等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共22页。试卷主要包含了下列说法不正确的是,下列命题,若的补角是125°,则的余角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了若的补角是125°,则的余角是,下列命题是假命题的有,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。