终身会员
搜索
    上传资料 赚现金

    必考点解析京改版七年级数学下册第七章观察、猜想与证明难点解析试题(无超纲)

    立即下载
    加入资料篮
    必考点解析京改版七年级数学下册第七章观察、猜想与证明难点解析试题(无超纲)第1页
    必考点解析京改版七年级数学下册第七章观察、猜想与证明难点解析试题(无超纲)第2页
    必考点解析京改版七年级数学下册第七章观察、猜想与证明难点解析试题(无超纲)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测

    展开

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共21页。试卷主要包含了下列说法中正确的是,若∠α=55°,则∠α的余角是,如图,直线AB∥CD,直线AB,一个角的补角比这个角的余角大.等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABCDAECF,∠A=41°,则∠C的度数为(  
    A.139° B.141° C.131° D.129°2、如图:O为直线AB上的一点,OC为一条射线,OD平分OE平分,图中互余的角共有(    A.1对 B.2对 C.4对 D.6对3、下列说法正确的个数是(  )①平方等于本身的数是正数;②单项式﹣π2x3y2的次数是7;③近似数7与7.0的精确度不相同;④因为ab,所以|a|>|b|;⑤一个角的补角大于这个角本身.A.1个 B.2个 C.3个 D.4个4、下列说法中正确的是(  )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点5、若∠α=55°,则∠α的余角是(  )A.35° B.45° C.135° D.145°6、一个角的余角比这个角的补角的一半小40°,则这个角为(    A.50° B.60° C.70° D.80°7、如图,直线ABCD,直线ABCD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为(       A.30° B.40° C.50° D.60°8、一个角的补角比这个角的余角大(       ).A.70° B.80° C.90° D.100°9、一副直角三角板如图放置,点CFD的延长线上,ABCF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°10、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮(  )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠1=71°,则∠1的补角等于__________度.2、如图,已知AOOCOBOD,∠COD=42°,则∠AOB=__________.3、若α=25°57′,则2α的余角等于_____.4、如图,直线l分别与直线ABCD相交于点EFEG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.5、已知互为补角,且,则______.三、解答题(5小题,每小题10分,共计50分)1、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:ABCD证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)ADBC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3ABCD(_______)2、已知互余,OP的角平分线.(1)画出所有符合条件的图形.(2)计算的度数.3、如图1所示,MN//PQ,∠ABCMNPQ分别交于A、C两点(1)若∠MAB=∠QCB=20°,则B的度数为          度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F①依题意在图1中补全图形;②若∠ABCn°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AECD相交于D点,且满足∠BAMmMAE, ∠BCPmDCP,试探究∠CDA与∠ABC的数量关系 4、如图,已知AEBFACAEBDBFACBD平行吗?补全下面的解答过程(理由或数学式).解:∵AEBF∴∠EAB          .(          ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD          ∴∠EAB          =∠FBG          即∠1=∠2.                              ).5、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是     ---------参考答案-----------一、单选题1、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF∴∠A=∠CGB=41°,ABCD∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.2、C【分析】根据余角的定义求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.【详解】解:∵OD平分OE平分又∵,即∴互余的角共有4对.故选:C.【点睛】此题考查了余角的定义,角平分线的概念等知识,解题的关键是熟练掌握余角的定义.余角:如果两个角相加等于90°,那么这两个角互为余角.3、A【分析】根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.【详解】解:①平方等于本身的数是1和0,故此说法错误;②单项式﹣π2x3y2的次数是5,故此说法错误;③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;④因为ab,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;故选A.【点睛】本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.4、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.5、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A.【点睛】本题考查了余角的定义,熟记定义是解题关键.6、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.7、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,ABCD∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.8、C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.【详解】解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x根据题意得:180°-x-(90°-x)=90°,故选:C.【点睛】本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.9、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,ABCF∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.10、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.二、填空题1、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.2、138°【分析】根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB【详解】解:∵AOOCOBOD∴∠AOC=∠DOB=90°,又∵∠COD=42°,∴∠BOC=90°-∠COD=90°-42°=48°,∴∠AOB=∠AOC+∠BOC=90°+48°=138°.【点睛】本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.3、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.4、34°【分析】根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.【详解】解:平分 故答案为【点睛】本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.5、【分析】根据题意可得,即可求解.【详解】解:∵互为补角,故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.三、解答题1、见解析【解析】【分析】由已知CE平分∠BCD可得∠1= 4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出ADBC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD    已知    ),∴∠1= ∠4 角平分线定义   ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),ADBC内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知, ∠D =∠3,ABCD内错角相等,两直线平行).故答案为:已知;4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.2、(1)见解析;(2)15°或45°【解析】【分析】(1)分当OC外部时和当OC内部时,两种情况,分别作图即可;(2)根据(1)所求和角平分线,余角的定义求解即可.【详解】解:(1)如图所示,即为所求;(2)当OC外部时(如图1),互余,OP的角平分线,OC内部时(如图2)互余OP的角平分线综上:或45°.【点睛】本题主要考查了角平分线的定义,余角的定义,熟知角平分线和余角的定义是解题的关键.3、(1)40;(2)①见解析;②;(3)mCDA+∠ABC=180°【解析】【分析】(1)作MNPQ的平行线HG,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AEPQ于点G,设∠MAEx°,∠DCPy°,知∠BAMmMAEmx°,∠BCPmDCPmy°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABCmx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGPx°,根据∠CDA=∠DCP−∠DGC可得答案.【详解】解:(1)作MN//PQ(2)①如图所示,②过点F(3)延长AEPQ于点G设∠MAEx°,∠DCPy°,则∠BAMmMAEmx°,∠BCPmDCPmy°,∴∠BCQ=180°my°,由(1)知,∠ABCmx°+180°my°,y°x°=MNPQ∴∠MAE=∠DGPx°,则∠CDA=∠DCPDGCy°x°mCDA+∠ABC=180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBDACBD;同位角相等,两直线平行【解析】【分析】由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.【详解】AEBF∴∠EAB=∠FBG(两直线平行,同位角相等).ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD(等量代换),∴∠EAB﹣∠EAC=∠FBG﹣∠FBD即∠1=∠2.ACBD(同位角相等,两直线平行).故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBDACBD,同位角相等,两直线平行.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.5、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°【解析】【分析】(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,则【详解】解:(1)∠AOD+∠BOD=90°,理由如下:∵∠AOC=90°,∴∠AOD+∠COD=90°,OD平分∠BOC∴∠BOC=2∠COD=2∠BOD∴∠AOD+∠BOD=90°;(2)∠AOC+∠BOC=180°,理由如下:OC平分∠BOD∴∠BOD=2∠COD=2∠BOC∵∠AOC+∠COD=180°,∴∠AOC+∠BOC=180°;(3)∵∠EPQ和∠FPQ互余,∴∠EPQ+∠FPQ=90°,∵射线PM平分∠EPQ,射线PN平分∠FPQ故答案为:45°.【点睛】本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解. 

    相关试卷

    数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题:

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了下列说法中正确的是,下列语句中,是命题的是等内容,欢迎下载使用。

    初中数学第七章 观察、猜想与证明综合与测试巩固练习:

    这是一份初中数学第七章 观察、猜想与证明综合与测试巩固练习,共18页。试卷主要包含了命题等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,下列语句中叙述正确的有,下列说法中,真命题的个数为,命题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map