![必考点解析京改版七年级数学下册第七章观察、猜想与证明专题练习试题第1页](http://img-preview.51jiaoxi.com/2/3/12696339/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第七章观察、猜想与证明专题练习试题第2页](http://img-preview.51jiaoxi.com/2/3/12696339/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![必考点解析京改版七年级数学下册第七章观察、猜想与证明专题练习试题第3页](http://img-preview.51jiaoxi.com/2/3/12696339/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共24页。试卷主要包含了下列说法中正确的是,下列命题中,为真命题的是,下列命题中,是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行2、在证明命题“若,则”是假命题时,下列选项中所举反例不正确的是( )A. B. C. D.3、若一个角比它的余角大30°,则这个角等于( )A.30° B.60° C.105° D.120°4、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°5、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点6、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°7、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等8、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )A.30° B.40° C.50° D.60°9、下列命题中,是真命题的是( )A.同位角相等 B.同旁内角相等,两直线平行C.平行于同一直线的两直线平行 D.相等的角是对顶角10、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.2、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.3、已知与互为补角,且,则______.4、已知∠α=65°14'15″,那么∠α的余角等于 _____.5、若与互余,且,则______.三、解答题(5小题,每小题10分,共计50分)1、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.2、问题情境:如图1,,,,求的度数. 小明的思路是:如图2,过作,通过平行线性质,可得______.问题迁移:如图3,,点在射线上运动,,.(1)当点在、两点之间运动时,、、之间有何数量关系?请说明理由.(2)如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、之间有何数量关系.3、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数4、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD( )∵MN∥AB,∴∠A=( )( )∵MN∥CD,∴∠D= ( )∴∠AGD=∠AGM+∠DGM=∠A+∠D.【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.5、已知,与互余,OP是的角平分线.(1)画出所有符合条件的图形.(2)计算的度数. ---------参考答案-----------一、单选题1、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.2、A【分析】所谓举反例是指满足命题的条件但不满足命题的结论,由此可判断.【详解】显然A选项既满足命题的条件也满足命题的结论,故不是举反例,其它三个选项满足命题的条件,但不满足命题的结论,所以都是举反例;故选:A【点睛】本题考查了命题的真假,说明一个命题是假命题要举反例.掌握举反例的含义是关键.3、B【分析】设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.【详解】解:设这个角为α,则它的余角为:90°-α,由题意得,α-(90°-α)=30°,解得:α=60°,故选:B【点睛】本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.4、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.5、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.6、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.7、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.8、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.9、C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.10、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.二、填空题1、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.2、34°【分析】根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.【详解】解:平分, 又 故答案为【点睛】本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.3、【分析】根据题意可得,即可求解.【详解】解:∵与互为补角,∴ ,∵,∴.故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.4、【分析】根据互为余角的两角之和为90°,即可得出答案.【详解】解:=65°14'15″,的余角=90°﹣65°14'15″=24°45'45″.故答案为:24°45'45″.【点睛】本题主要是考查了余角的定义以及角度的运算,熟记互余的两个角之和为90°,是解决本题的关键.5、69°【分析】由题意可设∠α=2x,∠β=3x,根据与互余可得关于x的方程,解方程即可求出x,然后代值计算即可;【详解】解:因为,所以设∠α=2x,∠β=3x,因为与互余,所以2x+3x=90°,解得x=18°,所以∠α=36°,∠β=54°,所以;故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.三、解答题1、(1);(2)∠ABC的度数改变,度数为.【解析】【分析】(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.【详解】(1)如图1,过点作. ∵,∴,∴.∵平分平分,,∴.∵,∴,∴.(2)的度数改变.画出的图形如图2,过点作. ∵平分,平分,,∴ .∵,∴,∴.∵,∴,∴,∴.【点睛】本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.2、问题情境:;问题迁移:(1);理由见解析;(2)当点在、两点之间时,;当点在射线上时,.【解析】【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE∥AB∥CD,通过平行线性质来求∠APC;(1)过点P作,得到理由平行线的性质得到,,即可得到;(2)分情况讨论当点P在B、O两点之间,以及点P在射线AM上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB∥CD,PE∥AB,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°, ∴∠APC=∠APE+∠CPE=50°+60°=110°;(1);过点P作,又因为,所以,则,,所以;(2)情况1:如图所示,当点P在B、O两点之间时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β,情况2:如图所示,点P在射线AM上时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要考查了借助辅助线构造平行线,利用平行线的性质进行推理,准确分析证明是解题的关键.3、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.4、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D. 应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°. 【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.5、(1)见解析;(2)15°或45°【解析】【分析】(1)分当OC在外部时和当OC在内部时,两种情况,分别作图即可;(2)根据(1)所求和角平分线,余角的定义求解即可.【详解】解:(1)如图所示,即为所求;(2)当OC在外部时(如图1),∵,与互余,∴,∴,∴OP是的角平分线,∴,∴当OC在内部时(如图2)∵,与互余∴,∴∴OP是的角平分线∴∴综上:或45°.【点睛】本题主要考查了角平分线的定义,余角的定义,熟知角平分线和余角的定义是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共25页。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共22页。试卷主要包含了下列说法中正确的个数是,如图,能判定AB∥CD的条件是,下列语句中,错误的个数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共19页。试卷主要包含了下列命题中,为真命题的是,下列命题是假命题的有,下列说法中正确的是等内容,欢迎下载使用。