初中北京课改版第七章 观察、猜想与证明综合与测试练习
展开
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试练习,共20页。试卷主要包含了下列说法不正确的是,下列命题是假命题的有,下列命题中,是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )A.128° B.142° C.38° D.152°2、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°3、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )A.40° B.50° C.140° D.150°4、下列说法不正确的是( )A.两点确定一条直线B.经过一点只能画一条直线C.射线AB和射线BA不是同一条射线D.若∠1+∠2=90°,则∠1与∠2互余5、如图,若要使与平行,则绕点至少旋转的度数是( )A. B. C. D.6、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°7、下列命题是假命题的有( )①在同一个平面内,不相交的两条直线必平行;②内错角相等;③相等的角是对顶角;④两条平行线被第三条直线所截,所得同位角相等.A.4个 B.3个 C.2个 D.1个8、下列命题中,是真命题的是( )A.同位角相等 B.同旁内角相等,两直线平行C.平行于同一直线的两直线平行 D.相等的角是对顶角9、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )A.38° B.42° C.48° D.52°10、下列命题中,是真命题的是( )A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知与互为补角,且,则______.2、如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=____ °.
3、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
4、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB(_______),∴∠1=∠______(________),又∵∠1=∠2(________),∴∠2=∠______(________),∴AB______(________).5、已知∠A=38°24',则∠A的补角的大小是____.三、解答题(5小题,每小题10分,共计50分)1、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)∴GD∥ .( )∴∠2=∠DAC.( )∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)∴AD∥EF.( )∴∠ADC=∠ .( )∵EF⊥BC,(已知)∴∠EFC=90°.( )∴∠ADC=90°.(等量代换)2、已知:如图,中,点、分别在、上,交于点, ,.(1)求证:;(2)若平分,,求的度数.3、直线、相交于点,平分,,,求与的度数.4、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.5、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数. ---------参考答案-----------一、单选题1、B【分析】首先根据题意求出,然后根据求解即可.【详解】解:∵∠AOC和∠BOD都是直角,∠DOC=38°,∴,∴.故选:B.【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.2、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.3、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.4、B【分析】根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.【详解】解:A、两点确定一条直线,说法正确,不符合题意;B、过一点可以画无数条直线,说法错误,符合题意;C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;故选B.【点睛】本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.5、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°-42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.6、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF,∴∠A=∠CGB=41°,∵ABCD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.7、C【分析】根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.【详解】解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;两直线平行,内错角相等;原命题是假命题;故②符合题意;相等的角不一定是对顶角;原命题是假命题;故③符合题意;两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;故选C【点睛】本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.8、C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.9、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.10、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.二、填空题1、【分析】根据题意可得,即可求解.【详解】解:∵与互为补角,∴ ,∵,∴.故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.2、110【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【详解】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点睛】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.3、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.4、已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行 【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.5、141°36′【分析】根据补角的定义即可求解.【详解】解:∠A的补角 =180°- 38°24'= 141°36′ .故答案为:141°36′【点睛】本题考查了补角的定义,熟知补角的定义“如果两个角的和是180°,则这两个角互为补角”是解题关键.三、解答题1、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义【解析】【分析】根据平行线的判定与性质以及垂直的定义即可完成填空.【详解】解:如图,∵∠1=∠C,(已知)∴,(同位角相等,两直线平行)∴∠2=∠DAC,(两直线平行,内错角相等)∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°,(等量代换)∴,(同旁内角互补,两直线平行)∴∠ADC=∠EFC,(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,(垂直的定义)∴∠ADC=90°.(等量代换)【点睛】本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.2、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFE,∴EF//AB,∴∠ADE=∠1,又∵,∴∠ADE=∠B,∴DE//BC,(2)∵平分,∴∠ADE=∠EDC,∵DE//BC,∴∠ADE=∠B,∵∴∠5+∠ADE+∠EDC==180°,解得:,∴∠ADC=2∠B=72°,∵EF//AB,∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、∠3=50°,∠2=65°.【解析】【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.4、∠EGF=120°.【解析】【分析】过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解【详解】解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:设,∵GB平分∠EGF,HF平分∠EHD,∴,∵AB//CD,∴FM∥AB∥CD,∴,∴,,即,,∵与互补,∴,∴,∴,∴.【点睛】本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.5、【解析】【分析】根据、可得,OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.【详解】解:∵、,∴,∵OF是∠AOE的角平分线,∴,∴,∴,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共23页。试卷主要包含了如图,下列命题中,真命题是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共21页。试卷主要包含了下列命题是假命题的有,如图等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步测试题,共24页。试卷主要包含了如图,以下命题是假命题的是,若的余角为,则的补角为,下列说法正确的个数是等内容,欢迎下载使用。