数学北京课改版第七章 观察、猜想与证明综合与测试习题
展开这是一份数学北京课改版第七章 观察、猜想与证明综合与测试习题,共21页。试卷主要包含了若的补角是125°,则的余角是,下列说法中,假命题的个数为,如图,直线AB,下列命题中,是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
2、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
3、在证明命题“若,则”是假命题时,下列选项中所举反例不正确的是( )
A. B. C. D.
4、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
5、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
6、对于命题“如果,那么.”能说明它是假命题的反例是( )
A. B.,
C., D.,
7、下列说法中,假命题的个数为( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
③过一点有且只有一条直线与这条直线平行
④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1个 B.2个 C.3个 D.4个
8、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
9、下列命题中,是真命题的是( )
A.同位角相等 B.同旁内角相等,两直线平行
C.平行于同一直线的两直线平行 D.相等的角是对顶角
10、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.
2、如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=_____.
3、填写推理理由
如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.
证明:∵EF∥AD
∴∠2=________(______________)
又∵∠1=∠2
∴∠1=∠3________
∴AB∥________(____________)
∴∠BAC+________=180°(___________)
又∵∠BAC=70°
∴∠AGD=________
4、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.
5、如图,已知ABCD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.
三、解答题(5小题,每小题10分,共计50分)
1、如图(甲),∠AOC和∠BOD都是直角.
(1)如果∠DOC=29°,那么∠AOB的度数为 度.
(2)找出图(甲)中相等的角.如果∠DOC≠29°,他们还会相等吗?
(3)若∠DOC越来越小,则∠AOB如何变化?
(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE相等的角.
2、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
(1)求∠DOE的度数;
(2)若∠EOF是直角,求∠COF的度数.
3、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:C,(已知)
,( )
.( )
又,(已知)
=180°.(等量代换)
,( )
.( )
,(已知)
,
.
4、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
5、如图,已知∠AOC=90°,∠BOD=90°,∠BOC=38°19′,求∠AOD的度数.
---------参考答案-----------
一、单选题
1、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
2、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
3、A
【分析】
所谓举反例是指满足命题的条件但不满足命题的结论,由此可判断.
【详解】
显然A选项既满足命题的条件也满足命题的结论,故不是举反例,其它三个选项满足命题的条件,但不满足命题的结论,所以都是举反例;
故选:A
【点睛】
本题考查了命题的真假,说明一个命题是假命题要举反例.掌握举反例的含义是关键.
4、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
5、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
6、A
【分析】
根据假命题的概念、角的计算解答.
【详解】
解:当时,,但,
命题“如果,那么”是假命题,
故选:A.
【点睛】
本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
7、C
【分析】
根据平行线的判定与性质、垂直的性质逐个判断即可得.
【详解】
解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
综上,假命题的个数是3个,
故选:C.
【点睛】
本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
8、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
9、C
【分析】
根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.
【详解】
解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;
B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;
C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;
D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.
10、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
二、填空题
1、60°度
【分析】
由邻补角的定义,结合,可得答案.
【详解】
解:
故答案为:
【点睛】
本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.
2、33°
【分析】
由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.
【详解】
解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.
故答案为:33°.
【点睛】
本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.
3、∠3 两直线平行,同位角相等 等量代换 DG 内错角相等,两直线平行 ∠AGD 两直线平行,同旁内角互补 110°
【分析】
根据平行线的判定与性质,求解即可.
【详解】
∵EF∥AD,
∴∠2=∠3,(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,
∴∠AGD=110°.
故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°
【点睛】
此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.
4、35
【分析】
根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.
【详解】
解:∵∠AOD=70°,∠AOD+∠BOD=180°,
∴∠BOD=110°,
∵OC是∠DOB的平分线,
∴ ,
∵OD⊥OE,
∴∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=20°,
∴∠COE=∠BOC-∠BOE=35°.
故答案为:35
【点睛】
本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.
5、
【分析】
作EF∥AB,证明AB∥ EF∥CD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出.
【详解】
解:如图,作EF∥AB,
∵AB∥CD,
∴AB∥ EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴,
∴ .
故答案为:
【点睛】
本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.
三、解答题
1、(1);(2)相等,理由见解析;(3)∠AOB越来越大(4)见解析
【解析】
【分析】
(1)根据∠AOC=90°,∠DOC=29°,求出∠AOD的度数,然后即可求出∠AOB的度数;
(2)根据直角和等式的性质可得,∠AOD=∠BOC;
(3)根据∠AOD+∠DOC+∠DOC+∠BOC=180°,可得∠AOB+∠DOC=180°,进而得到∠DOC变小∠AOB变大,若∠DOC越来越大,则∠AOB越来越小.
(4)首先以OE为边,在∠EOF外画∠GOE=90°,再以OF为边在∠EOF外画∠HOF=90°,即可得到∠HOG=∠EOF.
【详解】
解:(1)因为,∠AOC=∠DOB=90°,∠DOC=29°
所以,∠COB=90°﹣29°=61°,
所以,∠AOB=90°+61°=151°,
(2)相等的角有:∠AOC=∠DOB=90°,∠AOD=∠BOC;
因为∠AOD=∠AOC-∠DOC=∠DOB-∠DOC=∠COB
所以∠AOD=∠BOC;
如果∠DOC≠29°,他们还会相等;
(3)因为∠AOB=∠AOC+∠DOB-∠DOC=180°-∠DOC
所以当∠DOC越来越小,则∠AOB越来越大;
(4)如图,
画∠HOF=∠GOE=90°,则∠HOG=∠EOF
即,∠HOG为所画的角.
【点睛】
本题考查了余角和补角,以及角的计算,是基础题,准确识图是解题的关键.
2、(1);(2)
【解析】
【分析】
(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
(2)先求解 再利用平角的定义可得答案.
【详解】
解:(1) ∠AOC:∠AOD=3:7,
OE平分∠BOD,
(2)
【点睛】
本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
3、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
【解析】
【分析】
结合图形,根据平行线的判定和性质逐一进行填空即可.
【详解】
解:,已知
,同位角相等,两直线平行
两直线平行,内错角相等
又,(已知)
(等量代换)
,同旁内角互补,两直线平行)
(两直线平行,同位角相等)
,(已知)
,
,
.
【点睛】
本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
4、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【解析】
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
5、141°41′
【解析】
【分析】
利用角的和差关系计算,先求得∠COD=51°41′,再由∠AOD=∠AOC+∠COD即可求解.
【详解】
解:∵∠BOD=90°,∠BOC=38°19′
∴∠COD=∠BOD-∠BOC=51°41′
∵∠AOC=90°
∴∠AOD=∠AOC+∠COD=141°41′
答:∠AOD的度数为141°41′.
【点睛】
本题主要考查了余角,正确得出∠COD的度数是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共19页。试卷主要包含了下列命题是假命题的有,如图,直线AB∥CD,直线AB,以下命题是假命题的是等内容,欢迎下载使用。
这是一份数学第七章 观察、猜想与证明综合与测试测试题,共25页。试卷主要包含了如图,直线AB∥CD,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共22页。试卷主要包含了下列语句中,错误的个数是等内容,欢迎下载使用。