初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了若的补角是125°,则的余角是,下列命题是假命题的有,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
2、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
3、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.2
4、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
5、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
6、下列命题是假命题的有( )
①在同一个平面内,不相交的两条直线必平行;
②内错角相等;
③相等的角是对顶角;
④两条平行线被第三条直线所截,所得同位角相等.
A.4个 B.3个 C.2个 D.1个
7、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
8、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
9、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.
A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
10、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.
2、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.
3、已知一个角的余角是35°,那么这个角的度数是_____°.
4、如图,直线mn.若,,则的大小为_____度.
5、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.
2、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
3、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
4、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
5、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:C,(已知)
,( )
.( )
又,(已知)
=180°.(等量代换)
,( )
.( )
,(已知)
,
.
---------参考答案-----------
一、单选题
1、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
2、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
3、B
【分析】
根据余角的定义找出互余的角即可得解.
【详解】
解:∵OE平分∠AOB,
∴∠AOE=∠BOE=90°,
∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,
故选:B.
【点睛】
本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.
4、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
5、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
6、C
【分析】
根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.
【详解】
解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;
两直线平行,内错角相等;原命题是假命题;故②符合题意;
相等的角不一定是对顶角;原命题是假命题;故③符合题意;
两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;
故选C
【点睛】
本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.
7、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
8、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
9、D
【分析】
根据方向角的概念,和平行线的性质求解.
【详解】
解:如图:
∵AF∥DE,
∴∠ABE=∠FAB=43°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠CBD=180°﹣90°﹣43°=47°,
∴C地在B地的北偏西47°的方向上.
故选:D.
【点睛】
本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
10、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
二、填空题
1、平行
【分析】
根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.
【详解】
解:∵∠2:∠3=1:5,
∴∠2=30°,
∴∠1=∠2,
∴a∥b,
故答案为:平行.
【点睛】
本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.
2、15°
【分析】
根据平行线的性质和三角板的特殊角的度数解答即可.
【详解】
解:如图:
∵ABCD,
∴∠BAD=∠D=30°,
∵∠BAE=45°,
∴∠α=45°﹣30°=15°,
故答案为:15°.
【点睛】
此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.
3、55
【分析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.
【详解】
解:这个角的是90°35°=55°,
故答案为:55.
【点睛】
此题主要考查了余角,解题的关键是明确两个角互余,和为90°.
4、70
【分析】
如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
故答案为:70.
【点睛】
本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.
5、50°
【分析】
根据平行线的性质计算即可;
【详解】
解:如图所示,由折叠可得,∠3=∠1=65°,
∴∠CEG=130°,
∵AB∥CD,
∴∠2=180°﹣∠CEG=180°﹣130°=50°.
故答案为:50°.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
三、解答题
1、
【解析】
【分析】
根据、可得,OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.
【详解】
解:∵、,
∴,
∵OF是∠AOE的角平分线,
∴,
∴,
∴,
【点睛】
此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.
2、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【解析】
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
3、(1)两角相等,见解析;(2)180°
【解析】
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
4、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【解析】
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
5、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
【解析】
【分析】
结合图形,根据平行线的判定和性质逐一进行填空即可.
【详解】
解:,已知
,同位角相等,两直线平行
两直线平行,内错角相等
又,(已知)
(等量代换)
,同旁内角互补,两直线平行)
(两直线平行,同位角相等)
,(已知)
,
,
.
【点睛】
本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
相关试卷
这是一份2021学年第七章 观察、猜想与证明综合与测试练习,共22页。试卷主要包含了下列说法中正确的个数是,下列说法中,假命题的个数为,下列说法中正确的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共25页。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共22页。试卷主要包含了下列说法不正确的是,下列命题,若的补角是125°,则的余角是等内容,欢迎下载使用。