北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共22页。试卷主要包含了下列命题中,是真命题的是,下列说法中,真命题的个数为,一个角的补角比这个角的余角大.,下列语句中,是命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
3、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
4、下列命题中,是真命题的是( )
A.同位角相等 B.同旁内角相等,两直线平行
C.平行于同一直线的两直线平行 D.相等的角是对顶角
5、下列说法中,真命题的个数为( )
①两条平行线被第三条直线所截,同位角相等;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;
③过一点有且只有一条直线与这条直线平行;
④点到直线的距离是这一点到直线的垂线段;
A.1个 B.2个 C.3个 D.4个
6、一个角的补角比这个角的余角大( ).
A.70° B.80° C.90° D.100°
7、下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤ B.①②④ C.①③④ D.②③④⑤
8、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )
A.95° B.105° C.115° D.125°
9、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
10、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为________.
2、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度.
3、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
4、如图,,.则图中与互补的角是______.
5、已知,那么的余角是_____.
三、解答题(5小题,每小题10分,共计50分)
1、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
2、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
3、问题情境:如图1,,,,求的度数.
小明的思路是:如图2,过作,通过平行线性质,可得______.
问题迁移:如图3,,点在射线上运动,,.
(1)当点在、两点之间运动时,、、之间有何数量关系?请说明理由.
(2)如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、之间有何数量关系.
4、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).
理由:C,(已知)
,( )
.( )
又,(已知)
=180°.(等量代换)
,( )
.( )
,(已知)
,
.
5、如图,直线、相交于点,是平分线,,求度数.
---------参考答案-----------
一、单选题
1、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
2、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
3、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
4、C
【分析】
根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.
【详解】
解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;
B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;
C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;
D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;
故选:C
【点睛】
本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.
5、B
【分析】
根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可
【详解】
①两条平行线被第三条直线所截,同位角相等,故①是真命题;
②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;
③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,
④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,
故真命题是①②,
故选B
【点睛】
本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.
6、C
【分析】
根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.
【详解】
解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x,
根据题意得:180°-x-(90°-x)=90°,
故选:C.
【点睛】
本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.
7、A
【分析】
根据命题的定义分别进行判断即可.
【详解】
解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;
②同位角相等吗?是疑问句,不是命题,不符合题意;
③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;
④如果a>b,b>c,那么a>c,是命题,符合题意;
⑤直角都相等,是命题,符合题意,
命题有①④⑤.
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
8、B
【分析】
由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.
【详解】
解:由题意得∠ADF=45°,
∵,∠B=30°,
∴∠B+∠BDF=180°,
∴∠BDF=180°﹣∠B=150°,
∴∠ADB=∠BDF﹣∠ADF=105°.
故选:B
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.
9、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
10、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
二、填空题
1、120°
【分析】
要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.
【详解】
解:∵a∥b,∠1=60°,
∴∠3=120°,
∴∠2=∠3=120°.
故答案为:120°
【点睛】
考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.
2、60
【分析】
根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.
【详解】
解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,
∴∠AOE=∠COE,∠COE=∠BOC,
∴∠AOE=∠COE=∠BOC,
∵∠AOE+∠COE+∠BOC=180°,
∴∠BOC=60°,
∴∠AOD=∠BOC=60°,
故答案为:60.
【点睛】
本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.
3、35°
【分析】
根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
【详解】
解:∵OE⊥AB,
∴∠AOE=90°,
∵ ,
∴∠AOC=90°- ,
∴∠BOD=∠AOC= ,
故答案为:35°.
【点睛】
本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
4、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
5、
【分析】
直接利用互余两角的关系,结合度分秒的换算得出答案.
【详解】
∵,
∴的余角为:.
故答案为:.
【点睛】
此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.
三、解答题
1、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【解析】
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
2、见解析
【解析】
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
3、问题情境:;问题迁移:(1);理由见解析;(2)当点在、两点之间时,;当点在射线上时,.
【解析】
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE∥AB∥CD,通过平行线性质来求∠APC;
(1)过点P作,得到理由平行线的性质得到,,即可得到;
(2)分情况讨论当点P在B、O两点之间,以及点P在射线AM上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB∥CD,PE∥AB,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1);
过点P作,
又因为,所以,
则,,
所以;
(2)情况1:如图所示,当点P在B、O两点之间时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β,
情况2:如图所示,点P在射线AM上时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要考查了借助辅助线构造平行线,利用平行线的性质进行推理,准确分析证明是解题的关键.
4、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
【解析】
【分析】
结合图形,根据平行线的判定和性质逐一进行填空即可.
【详解】
解:,已知
,同位角相等,两直线平行
两直线平行,内错角相等
又,(已知)
(等量代换)
,同旁内角互补,两直线平行)
(两直线平行,同位角相等)
,(已知)
,
,
.
【点睛】
本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
5、77°
【解析】
【分析】
由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.
【详解】
解:∵OE是∠AOD的平分线,∠AOC=26°,
∴∠AOD=180°-∠AOC=154°,
∴∠AOE=∠AOD=77°.
【点睛】
本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共21页。试卷主要包含了若的补角是150°,则的余角是,一个角的补角比这个角的余角大.,下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共23页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共21页。试卷主要包含了直线,一个角的补角比这个角的余角大.,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。