


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共21页。试卷主要包含了下列说法正确的个数是,下列说法中正确的是,下列命题中,真命题是,如图,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.2、下列命题是假命题的有( )①在同一个平面内,不相交的两条直线必平行;②内错角相等;③相等的角是对顶角;④两条平行线被第三条直线所截,所得同位角相等.A.4个 B.3个 C.2个 D.1个3、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤4、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°5、下列说法正确的个数是( )①平方等于本身的数是正数;②单项式﹣π2x3y2的次数是7;③近似数7与7.0的精确度不相同;④因为a>b,所以|a|>|b|;⑤一个角的补角大于这个角本身.A.1个 B.2个 C.3个 D.4个6、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点7、下列命题中,真命题是( )A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补8、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )A.152° B.28° C.52° D.90°9、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )A.55° B.125° C.65° D.135°10、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABCD,,,则____.2、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .3、如图,OE是的平分线,交OA于点C,交OE于点D,,则的度数是______°.4、如图,,,,则∠CAD的度数为____________.5、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c; ②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么bc.其中正确的是__.(填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180°∴ CD∥EF( , )∵∠A=∠2 ∴( ) ( , )∴ AB∥CD∥EF( , )∴ ∠A= ,∠C= ,( , )∵ ∠AFE =∠EFC+∠AFC ,∴ = .2、填写推理理由: 如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2 ∵∠1=∠2,∴∠DCB=∠1. ∴GD∥CB .∴∠3=∠ACB .3、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC( ),∴∠B+∠DCB=180°( ).∵∠B=( )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=( )(垂直的定义).∴∠2=( ).∵AB∥DC(已知),∴∠1=( )( ).∵AC平分∠DAB(已知),∴∠DAB=2∠1=( )(角平分线的定义).∵AB∥DC(己知),∴( )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB= .5、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数 ---------参考答案-----------一、单选题1、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.2、C【分析】根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.【详解】解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;两直线平行,内错角相等;原命题是假命题;故②符合题意;相等的角不一定是对顶角;原命题是假命题;故③符合题意;两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;故选C【点睛】本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.3、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.5、A【分析】根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.【详解】解:①平方等于本身的数是1和0,故此说法错误;②单项式﹣π2x3y2的次数是5,故此说法错误;③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;故选A.【点睛】本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.6、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.7、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、错误,当被截的直线平行时形成的同位角才相等;B、错误,对顶角相等但相等的角不一定是对顶角;C、正确,必须强调在同一平面内;D、错误,两直线平行同旁内角才互补.故选:C.【点睛】主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.9、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EO⊥AB,∠EOC=35°,,.故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.10、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A.故选:A.【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.二、填空题1、95°【分析】过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点E作EF∥AB,∵EF//AB,∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,∵EF//AB,AB//CD,∴EF//CD,∴∠FEC=∠DCE,∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.2、平行【分析】过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.【详解】解:过点作,
∴,∵∠BAC+∠ACE+∠CEF=360°,∴,∴,∴,故答案为:平行.【点睛】本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.3、25【分析】先证明再证明从而可得答案.【详解】解: OE是的平分线, ∵, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.4、【分析】根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.【详解】解:∵∥,,∴,∴故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.5、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;②如果ba,ca,那么bc,正确;③如果b⊥a,c⊥a,那么bc,错误;④如果b⊥a,c⊥a,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.三、解答题1、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【解析】【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB∥CD ) (同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC ,∴ ∠A = ∠C+∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.2、两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.【解析】【分析】根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD∥CB,最后根据两直线平行,同位角相等,所以∠3=∠ACB.【详解】证明:∵CD∥EF, ∴∠DCB=∠2(两直线平行,同位角相等),∵∠1=∠2,∴∠DCB=∠1(等量代换). ∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).故答案为:两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.3、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、见解析.【解析】【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),∴(两直线平行,同旁内角互补).∵(已知),∴.∵(已知),∴(垂直的定义).∴.∵(已知),∴(两直线平行,内错角相等).∵平分(已知),∴(角平分线的定义).∵(己知),∴(两条直线平行,同旁内角互补).∴.【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.5、55°【解析】【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共19页。试卷主要包含了已知,则的余角的补角是,以下命题是假命题的是等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试课时练习,共18页。试卷主要包含了如图,直线AB∥CD,直线AB,下列语句中叙述正确的有等内容,欢迎下载使用。
这是一份数学北京课改版第七章 观察、猜想与证明综合与测试达标测试,共20页。试卷主要包含了若的余角为,则的补角为,如图,下列条件中能判断直线的是,下列说法中,真命题的个数为等内容,欢迎下载使用。
