北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了下列命题中,为真命题的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
2、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
3、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
4、下列命题中,为真命题的是( )
A.若,则 B.若,则
C.同位角相等 D.对顶角相等
5、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )
A.∠1 B. C.∠2 D.
6、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
7、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
8、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
9、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
10、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )
A.138° B.128° C.52° D.152°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=____ °.
2、已知一个角的补角是这个角的余角的3倍,则这个角是______度.
3、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.
4、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
5、如图,AB是一条直线,如果∠1=65°15′,∠2=78°30′,则∠3=_________度.
三、解答题(5小题,每小题10分,共计50分)
1、已知∠α=76°42',∠β=41°41'.
求:(1)∠β的余角;
(2)∠α与∠β的2倍的和.
2、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;
(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;
(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是 .
3、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
(1)试说明∠1=∠2;
(2)若∠BOC=4∠2,求∠AOC的大小.
4、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.
5、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
---------参考答案-----------
一、单选题
1、C
【分析】
根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
【详解】
解:①平面内,垂直于同一条直线的两直线平行,是真命题;
②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
③垂线段最短,是真命题;
④两直线平行,同旁内角互补,是假命题,
∴真命题有3个,
故选C.
【点睛】
本题主要考查了判断命题真假,熟知相关知识是解题的关键.
2、C
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
3、B
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
4、D
【分析】
利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
【详解】
解:A、若,则或,故A错误.
B、当时,有,故B错误.
C、两直线平行,同位角相等,故C错误.
D、对顶角相等,D正确.
故选:D .
【点睛】
本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
5、B
【分析】
由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.
【详解】
解:∵∠1与∠2互为补角,
∴∠1+∠2=180°,
∵∠1>∠2,
∴∠2<90°,
设∠2的余角是∠3,
∴∠3=90°﹣∠2,
∴∠3=∠1﹣90°,
∴∠1﹣∠2=2∠3,
∴∠3=,
∴∠2的余角为,
故选B.
【点睛】
本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.
6、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
7、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
8、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
9、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
10、B
【分析】
根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.
【详解】
解:如图.
∵l1//l2,
∴∠1=∠3=52°.
∵∠2与∠3是邻补角,
∴∠2=180°﹣∠3=180°﹣52°=128°.
故选:B.
【点睛】
本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.
二、填空题
1、110
【分析】
根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.
【详解】
解:∵∠AOB与∠BOC互补,
∴∠AOB+∠BOC=180°,
∵OM平分∠BOC,
∴∠BOC=2∠BOM=70°,
∴∠AOB=110°,
故答案为:110.
【点睛】
此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.
2、
【分析】
设这个角为 则这个角的补角为: 这个角的余角为: 根据等量关系一个角的补角是这个角的余角的3倍,列方程,解方程可得.
【详解】
解:设这个角为 则这个角的补角为: 这个角的余角为:
,
,
,
,
答:这个角为.
故答案为:.
【点睛】
本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.
3、50°
【分析】
根据平行线的性质计算即可;
【详解】
解:如图所示,由折叠可得,∠3=∠1=65°,
∴∠CEG=130°,
∵AB∥CD,
∴∠2=180°﹣∠CEG=180°﹣130°=50°.
故答案为:50°.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
4、①②④
【分析】
根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.
【详解】
解:∵纸条的两边互相平行,
∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;
∵三角板是直角三角板,
∴∠2+∠4=180°-90°=90°,
∵∠3=∠4,
∴∠2+∠3=90°,故③不正确.
综上所述,正确的是①②④.
故答案为:①②④.
【点睛】
本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.
5、36.25
【分析】
根据度、分、秒之间的加减运算直接计算65°15′+78°30′即可得到∠1+∠2;观察图形可知∠1+∠2+∠3的和为平角,由此分析求解∠3的度数.
【详解】
解:∵∠1=65°15′,∠2=78°30′,
∴∠3=180°﹣(∠1+∠2)
=180°﹣(65°15′+78°30′)
=36°15′
=36.25°.
故答案为:36.25.
【点睛】
本题主要考查角加减的计算,角的单位与角度制,结合图形找出各角的数量关系是解决此题的关键.
三、解答题
1、(1)48°19';(2)160°4'
【解析】
【分析】
(1)根据互为余角的两个角的和为90度可得的余角,将代入计算即可;
(2)将,代入,然后计算即可.
【详解】
解:(1),
的余角
;
(2),,
.
【点睛】
本题考查了余角与补角,以及度分秒的换算,解题的关键是掌握如果两个角的和等于(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;度、分、秒是常用的角的度量单位.1度分,即,1分秒,即.
2、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°
【解析】
【分析】
(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;
(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;
(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,,则.
【详解】
解:(1)∠AOD+∠BOD=90°,理由如下:
∵∠AOC=90°,
∴∠AOD+∠COD=90°,
∵OD平分∠BOC,
∴∠BOC=2∠COD=2∠BOD,
∴∠AOD+∠BOD=90°;
(2)∠AOC+∠BOC=180°,理由如下:
∵OC平分∠BOD,
∴∠BOD=2∠COD=2∠BOC,
∵∠AOC+∠COD=180°,
∴∠AOC+∠BOC=180°;
(3)∵∠EPQ和∠FPQ互余,
∴∠EPQ+∠FPQ=90°,
∵射线PM平分∠EPQ,射线PN平分∠FPQ,
∴,,
∴,
故答案为:45°.
【点睛】
本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.
3、(1)见解析;(2)60°
【解析】
【分析】
(1)利用同角的余角相等解答即可得出结论;
(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
【详解】
解:(1)∵OM⊥AB,ON⊥CD,
∴∠AOM=∠CON=90°,
∴∠AOC+∠1=90°,∠AOC+∠2=90°,
∴∠1=∠2.
(2)∵OM⊥AB,
∴∠BOM=90°.
∵∠1=∠2,∠BOC=4∠2,
∴∠BOC=4∠1.
∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
即3∠1=90°,
∴∠1=30°.
∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
【点睛】
本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
4、60°
【解析】
【分析】
由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
【详解】
解:CD⊥AB于D,FE⊥AB于E,
∴,
∴∠2=∠4,
又∵∠1=∠2,
∴∠1=∠4,
∴,
∴.
【点睛】
本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
5、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【解析】
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
相关试卷
这是一份初中数学第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,命题,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试练习题,共22页。试卷主要包含了下列说法中,假命题的个数为等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共20页。试卷主要包含了一个角的补角比这个角的余角大.,直线,下列语句中叙述正确的有等内容,欢迎下载使用。