年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析:京改版七年级数学下册第七章观察、猜想与证明专项测试试卷(含答案解析)

    难点解析:京改版七年级数学下册第七章观察、猜想与证明专项测试试卷(含答案解析)第1页
    难点解析:京改版七年级数学下册第七章观察、猜想与证明专项测试试卷(含答案解析)第2页
    难点解析:京改版七年级数学下册第七章观察、猜想与证明专项测试试卷(含答案解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题

    展开

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共23页。试卷主要包含了下列说法中正确的是,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
    A.1个B.2个C.3个D.4个
    2、如图,若要使与平行,则绕点至少旋转的度数是( )
    A.B.C.D.
    3、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
    小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
    A.嘉淇的推理严谨,不需要补充
    B.应补充∠2=∠5
    C.应补充∠3+∠5=180°
    D.应补充∠4=∠5
    4、下列说法中正确的是( )
    A.锐角的2倍是钝角B.两点之间的所有连线中,线段最短
    C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点
    5、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
    A.55°B.125°C.115°D.65°
    6、如图,下列条件中能判断直线的是( )
    A.∠1=∠2B.∠1=∠5C.∠2=∠4D.∠3=∠5
    7、如图,木工用图中的角尺画平行线的依据是( )
    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    8、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
    A.40°B.36°C.44°D.100°
    9、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
    A.128°B.142°C.38°D.152°
    10、下列说法中,假命题的个数为( )
    ①两条直线被第三条直线所截,同位角相等
    ②如果两条直线都与第三条直线垂直,那么这两条直线互相平行
    ③过一点有且只有一条直线与这条直线平行
    ④在同一平面内,过一点有且只有一条直线与已知直线垂直
    A.1个B.2个C.3个D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.
    2、如图,直线mn.若,,则的大小为_____度.
    3、如图,已知ABCD,,,则____.
    4、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
    5、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
    证明:∵(已知),
    ∴(垂直的定义).
    ∴________,
    ∵(已知),
    ∴________(依据1:________),
    ∴(依据2:________).
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,点A,O,B在同一条直线上,,分别平分和.
    (1)求的度数.
    (2)如果,求的度数.
    2、3.已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
    3、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.
    4、已知,,三点在同一条直线上,平分,平分.
    (1)若,如图1,则 ;
    (2)若,如图2,求的度数;
    (3)若如图3,求的度数.
    5、【感知】已知:如图①,点E在AB上,且CE平分,.求证:.
    将下列证明过程补充完整:
    证明:∵CE平分(已知),
    ∴__________(角平分线的定义),
    ∵(已知),
    ∴___________(等量代换),
    ∴(______________).
    【探究】已知:如图②,点E在AB上,且CE平分,.求证:.
    【应用】如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
    ---------参考答案-----------
    一、单选题
    1、C
    【分析】
    根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
    【详解】
    解:①平面内,垂直于同一条直线的两直线平行,是真命题;
    ②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
    ③垂线段最短,是真命题;
    ④两直线平行,同旁内角互补,是假命题,
    ∴真命题有3个,
    故选C.
    【点睛】
    本题主要考查了判断命题真假,熟知相关知识是解题的关键.
    2、A
    【分析】
    根据“两直线平行,内错角相等”进行计算.
    【详解】
    解:如图,
    ∵l1∥l2,
    ∴∠AOB=∠OBC=42°,
    ∴80°-42°=38°,
    即l1绕点O至少旋转38度才能与l2平行.
    故选:A.
    【点睛】
    考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
    3、D
    【分析】
    根据平行线的性质与判定、平行公理及推论解决此题.
    【详解】
    解:证明:作直线DF交直线a、b、c分别于点D、E、F,
    ∵a∥b,
    ∴∠1=∠4,
    又∵a∥c,
    ∴∠1=∠5,
    ∴∠4=∠5.
    ∴b∥c.
    ∴应补充∠4=∠5.
    故选:D.
    【点睛】
    本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
    4、B
    【分析】
    根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
    【详解】
    解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
    B.两点之间的所有连线中,线段最短,正确;
    C.相等的角不一定是对顶角,故不符合题意;
    D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
    故选:B.
    【点睛】
    本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
    5、B
    【分析】
    根据对顶角相等即可求解.
    【详解】
    解:∵直线AB和CD相交于点O,∠AOC=125°,
    ∴∠BOD等于125°.
    故选B.
    【点睛】
    本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
    6、C
    【分析】
    利用平行线的判定方法判断即可得到结果.
    【详解】
    解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
    B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
    C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
    D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
    故选:C.
    【点睛】
    此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
    7、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    8、A
    【分析】
    首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
    【详解】
    ∵∠1=40°,∠2=40°,
    ∴∠1=∠2,
    ∴PQMN,
    ∴∠4=180°﹣∠3=40°,
    故选:A.
    【点睛】
    本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
    9、B
    【分析】
    首先根据题意求出,然后根据求解即可.
    【详解】
    解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
    ∴,
    ∴.
    故选:B.
    【点睛】
    此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
    10、C
    【分析】
    根据平行线的判定与性质、垂直的性质逐个判断即可得.
    【详解】
    解:①两条平行线被第三条直线所截,同位角相等,则原说法错误,是假命题;
    ②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,则原说法错误,是假命题;
    ③过直线外一点有且只有一条直线与这条直线平行,则原说法错误,是假命题;
    ④在同一平面内,过一点有且只有一条直线与已知直线垂直,则原说法正确,是真命题;
    综上,假命题的个数是3个,
    故选:C.
    【点睛】
    本题考查了平行线的判定与性质、垂直的性质,熟练掌握各性质是解题关键.
    二、填空题
    1、130°
    【分析】
    根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.
    【详解】
    解:∵AB∥CD,∠EGB=50°,
    ∴∠EHD=∠EGB=50°,
    ∴∠CHG=180°﹣∠EHD=130°.
    故答案为:130°.
    【点睛】
    本题主要考查平行线的性质,邻补角,属于基础题.
    2、70
    【分析】
    如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.
    【详解】
    解:如图,过点作,





    故答案为:70.
    【点睛】
    本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.
    3、95°
    【分析】
    过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
    【详解】
    解:如图,过点E作EF∥AB,
    ∵EF//AB,
    ∴∠BEF+∠ABE=180°,
    ∵∠ABE=120°,
    ∴∠BEF=180°-∠ABE=180°-120°=60°,
    ∵EF//AB,AB//CD,
    ∴EF//CD,
    ∴∠FEC=∠DCE,
    ∵∠DCE=35°,
    ∴∠FEC=35°,
    ∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
    故答案为:95°
    【点睛】
    本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
    4、或
    【分析】
    设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
    【详解】
    解:设的度数为,则的度数为,
    如图1,和互相平行,可得:∠2=∠3,
    同理:∠1=∠3,
    ∴∠2=∠1,
    ∴当两角相等时:,
    解得:,

    如图2,和互相平行,可得:∠2+∠3=,
    而和互相平行,得∠1=∠3,
    ∴∠2+∠1=,
    ∴当两角互补时:,
    解得:,

    故填:或.
    【点睛】
    本题考查平行线的性质和方程的应用,分类讨论思想是关键.
    5、 同角的余角相等 内错角相等,两直线平行
    【分析】
    根据垂直的定义及平行线的判定定理即可填空.
    【详解】
    ∵(已知),
    ∴(垂直的定义).
    ∴,
    ∵(已知),
    ∴(同角的余角相等),
    ∴(内错角相等,两直线平行).
    故答案为:;;同角的余角相等;内错角相等,两直线平行.
    【点睛】
    此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
    三、解答题
    1、(1);(2)
    【解析】
    【分析】
    (1)根据角平分线的定义,平角的定义求解即可;
    (2)根据角平分线的定义,互补和互余的意义计算即可得出答案.
    【详解】
    解:(1)如图,∵是的平分线,
    ∴.
    ∵是的平分线,
    ∴.
    ∴.
    (2)由(1)可知.
    ∴.
    【点睛】
    本题考查角平分线的定义、平角的定义,互余、互补的意义以及角的和差关系,通过图形直观得出各个角之间的关系式正确解答的关键.
    2、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【解析】
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
    3、∠EGF=120°.
    【解析】
    【分析】
    过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解
    【详解】
    解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:
    设,
    ∵GB平分∠EGF,HF平分∠EHD,
    ∴,
    ∵AB//CD,
    ∴FM∥AB∥CD,
    ∴,
    ∴,,
    即,,
    ∵与互补,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.
    4、(1)90;(2)90°;(3)90°
    【解析】
    【分析】
    (1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
    (2)由,则,同(1)即可得出结果;
    (3)易证,同(1)得,,即可得出结果.
    【详解】
    解:(1),,三点在同一条直线上,



    平分,平分,
    ,,

    故答案为:90;
    (2),

    同(1)得:,,

    (3),

    同(1)得:,,

    【点睛】
    本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
    5、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
    【解析】
    【分析】
    感知:读懂每一步证明过程及证明的依据,即可完成解答;
    探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
    应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
    【详解】
    感知
    ∵CE平分(已知),
    ∴ECD(角平分线的定义),
    ∵(已知),
    ∴ECD(等量代换),
    ∴(内错角相等,两直线平行).
    故答案为:ECD;ECD;内错角相等,两直线平行
    探究
    ∵CE平分,
    ∴,
    ∵,
    ∴,
    ∵.
    应用
    ∵BE平分∠DBC,
    ∴,
    ∵AE∥BC,
    ∴∠CBE=∠E,∠BAE+∠ABC=180゜,
    ∴∠E=∠ABE,
    ∵,
    ∴∠ABC=80゜


    【点睛】
    本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
    已知:如图,b∥a,c∥a,
    求证:b∥c;
    证明:作直线DF交直线a、b、c分
    别于点D、E、F,
    ∵a∥b,∴∠1=∠4,又∵a∥c,
    ∴∠1=∠5,
    ∴b∥c.

    相关试卷

    初中数学第七章 观察、猜想与证明综合与测试随堂练习题:

    这是一份初中数学第七章 观察、猜想与证明综合与测试随堂练习题,共21页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法中,真命题的个数为,直线等内容,欢迎下载使用。

    数学七年级下册第七章 观察、猜想与证明综合与测试课时练习:

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时练习,共23页。试卷主要包含了如图,下列条件中能判断直线的是,已知,则的余角的补角是,若的余角为,则的补角为,下列命题等内容,欢迎下载使用。

    初中数学第七章 观察、猜想与证明综合与测试同步达标检测题:

    这是一份初中数学第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,命题,如图,下列条件中能判断直线的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map