初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共22页。试卷主要包含了若是关于x,用代入消元法解关于等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.C. D.2、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=13、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.4、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )A.-5 B.-1 C.9 D.115、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A.11支 B.9支 C.7支 D.5支6、在某场CBA比赛中,某位运动员的技术统计如下表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分(分)篮板(个)防攻(次)个人总得分(分)数据38271163433注:①表中出手投篮次数和投中次数均不包括罚球;②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.A.5,6 B.6,5 C.4,7 D.7,47、下列方程中,①;②;③;④,是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个8、已知 是方程的一个解, 那么的值是( ).A.1 B.3 C.-3 D.-19、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.10、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B.; C. ; D. 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙、丙三人到某单人小火锅就餐,该店共有种配菜可以选择,每种配菜都有大盘菜、中盘菜、小盘菜这三种分量,价格分别为元、元和元,,、都为正整数.每个人都选择了所有种配菜,而且对于每一种配菜,三个人在分量上的选择都各个相同,结账时,甲乙两人都花费了元且两个在大盘菜的花费上各不相同,而丙共花费了元,那么丙在大盘菜上花费_________元.2、如图,一个长方形图案是由8个大小相同的小长方形拼成,宽为60cm,设每个小长方形的长为cm,宽为cm,可列方程组为______.3、若x,y满足方程组,则化数式的值为 _____.4、现有20吨货物,要租用货车运走.汽车公司有两种货车,大货车每车可以装7吨货物,运一次要600元,小货车每车可以装4吨,运一次要400元.要使货物全部运走,至少需要运费___元.5、网络时代的到来,让网购成为人们生活中随处可见的操作,快递员也成为一项方便人们生活重要的职业,A,B,C三位快递员在三个不同的快递公司进行派件工作,且每件快递派送费用有一定差别,B快递员的每件快递派送费是A的2倍,且A快递员每件快递派送费为整数.平时每位快递员的每天派送件数基本保持稳定,B快递员每天派送的数量是C的1.5倍,C快递员每天派送的数量为200件,三位快递员平时一天的总收入为800元.由于本周处于双12购物节期间,大量快选带留,三位派送员加班加点进行派送,每件快递派送费不发生变化,每天的派送比平时均有变化,A快递员比平时的1.5倍还多60件,B快递员比平时的2倍多100件,c快递员是平时的3倍,此时每天三位快递员一天总收入增加到1940元则B快递员在双12购物节派送期间每天收入为 _____元.三、解答题(5小题,每小题10分,共计50分)1、表一x3a9y02b表二x91cy43612(1)关于x,y二元一次方程2x﹣3y=6和mx+ny=40的三组解分别如表一、表二所示,则:a= ;b= ;c= .(2)关于x,y二元一次方程组的解是 .2、解下列二元一次方程组:3、已知关于的方程组.(1)①当a=0时,该方程组的解是__________;②x与y的数量关系是___________(不含字母a);(2)是否存在有理数a,使得?请写出你的思考过程.4、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?5、列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:类别/单价成本价(元/箱)销售价(元/箱)A品牌2032B品牌3550(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润? ---------参考答案-----------一、单选题1、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.3、B【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.4、D【分析】把代入ax-5y=1解方程即可求解.【详解】解:∵是关于x、y的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:.故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.5、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得①×4-②×5得,所以,将代入①,得.即.∵,∴,∴x为小于6的正整数,四个选项中只有D符合题意;故选D.【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.6、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:,解得:.答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.7、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;②化简后为,不符合定义,此项错误;③含有三个未知数不符合定义,此项错误;④不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.8、A【分析】把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.【详解】解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.【点睛】本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.9、A【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.10、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.【详解】解:,①×2得,③+②得,把代入①得,,∵的解都是正数,∴,解得.故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.二、填空题1、21【解析】【分析】由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以应是每一种菜品的总价的整数倍,即,根据题意求出整数解,推出,,或,,,设丙选了大盘菜份,中盘菜份,分两种情形分别构建方程求解即可.【详解】解:由题意,三人各不相同,说明每一种菜的各类都被三人吃了,所以应是每一种菜品的总价的整数倍,即,,、都为正整数,可知:,,或,,设丙选了大盘菜份,中盘菜份.由题意,,,(舍弃不合题意)或,(舍弃不合题意),或,,,,故答案为:21.【点睛】本题考查列代数式,二元一次方程的整数解等知识,理解题意,学会利用参数构建方程解决问题是解题的关键.2、【解析】【分析】根据题意可知,小长方形的一个长+一个宽等于大长方形的宽,2个小长方形的长等于大长方形的长,一个小长方形的长+三个小长方形的宽等于大长方形的长,由此即可列出方程求解.【详解】解:由题意得:,故答案为:.【点睛】本题主要考查了列二元一次方程组,解题的关键在于能够准确读懂题意.3、0【解析】【分析】二元一次方程组两式相加得x+y=2,两式相减得x-y=4,将结果代入=0.【详解】∵令有∴令有∴将,代入得.故答案为:0.【点睛】本题考查了已知式子的值解代数式值和解二元一次方程组,通过加减消元法化简二元一次方程组,得出所求代数式中含有的部分,再代入计算即可.4、1800【解析】【分析】设需要大货车为x次,需要小货车为y次,根据题意列出方程,求出的范围,分三种情况进行讨论,分别求解每种情况所需运费,即可求解.【详解】解:设需要大货车为x次,需要小货车为y次,由题意可得∵都为非负的整数∴当时,,需要小货车运送0次,费用为(元)当时,,需要小货车运送2次,费用为(元)当时,,需要小货车运送4次,费用为(元)当时,,需要小货车运送5次,费用为(元)∵∴最低费用为1800元故答案为:1800【点睛】此题考查了方案的选择问题,解题的关键是理解题意,正确求出每种情况下的费用.5、1400【解析】【分析】设A每件快递派送费为x元,A每天派送件数为y件,C每件快递派送费为z元,根据题意列出x、y、z的方程,进而解方程即可求解.【详解】解:设A每件快递派送费为x元,B每件快递派送费为2x元,C每件快递派送费为y元,A平时每天派送件数为z件,根据题意,B平时每天派送件数为300件,双12购物节期间,A每天派送件数为(1.5z+60)件,B每天派送件数为700件,根据题意,,即:,∵x为整数,∴由得x=1,则有:,解得:,∴B每件快递派送费为2元,则B快递员在双12购物节派送期间每天收入为2×700=1400元,故答案为:1400.【点睛】本题考查三元一次方程组的应用、解二元一次方程组,理解题意,找准等量关系,正确列出方程组,得出x=1是解答的关键.三、解答题1、(1)6;4;7;(2)【分析】(1)将x=a,y=2,x=9,y=b分别代入2x﹣3y=6,可求a、b的值;将x=9,y=4,x=1,y=36代入mx+ny=40,得到方程组,求出方程为4x+y=40,再将将x=c,y=12代入4x+y=40,即可求c的值;(2)用加减消元法求解二元一次方程组即可.【详解】解:(1)将x=a,y=2代入2x﹣3y=6,∴2a﹣6=6,∴a=6,将x=9,y=b代入2x﹣3y=6,∴18﹣3b=6,∴b=4,将x=9,y=4,x=1,y=36代入mx+ny=40,∴,①×9,得81m+36n=360③,③﹣②,得80m=320,∴m=4,将m=4代入①得,n=1,∴4x+y=40,将x=c,y=12代入4x+y=40,∴4c+12=40,∴c=7,故答案为:6,4,7;(2)由(1)可得,①×3,得12x+3y=120③,②+③,得14x=126,解得x=9,将x=9代入①,得y=4,∴方程组的解为,故答案为:.【点睛】本题考查了同解方程组,加减消元法解二元一次方程组,掌握二元一次方程组解的定义以及解法是解题的关键.2、【分析】先把方程组进行整理,然后利用代入消元法解方程组,即可得到答案.【详解】解:,整理得:,由①得:③,把③代入②,得:,解得:,把代入③,得,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法进行解题.3、(1)①;②;(2)不存在,思考过程见解析.【分析】(1)①将代入方程组,再利用加减消元法解方程组即可得;②先根据方程组中的第二个方程可得,再将其代入第一个方程即可得;(2)先根据绝对值和偶次方的非负性求出,再利用(1)②的结论进行检验即可得答案.【详解】解:(1)①当时,方程组为,由④③得:,解得,将代入③得:,解得,则该方程组的解是,故答案为:;②,由第二个方程得:,将代入第一个方程得:,整理得:,故答案为:;(2)不存在,思考过程如下:当时,则,即,此时,所以不存在有理数,使得.【点睛】本题考查了利用加减消元法解二元一次方程组、绝对值和偶次方的非负性,熟练掌握消元法是解题关键.4、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,∴m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费.5、(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元【分析】(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,根据该超市购进A、B两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意得:,解得:.答:该大型超市购进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)(元).答:全部销售完600箱矿泉水,该超市共获得7800元利润.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后测评,共19页。试卷主要包含了已知,则,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了若方程组的解为,则方程组的解为等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了若是方程的解,则等于,若是关于x等内容,欢迎下载使用。