初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练,共20页。试卷主要包含了已知方程组中,x,用代入消元法解关于,已知二元一次方程组则等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个2、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )A.330千米 B.170千米 C.160千米 D.150千米3、方程组的解是( )A. B. C. D.4、如果的解都是正数,那么a 的取值范围是( ).A.a<2; B.; C. ; D. 5、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.6、已知方程组中,x、y的值相等,则m等于( ).A.1或-1 B.1 C.5 D.-57、用代入消元法解关于、的方程组时,代入正确的是( )A. B.C. D.8、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )A.1个 B.2个 C.3个 D.4个9、已知二元一次方程组则( )A.6 B.4 C.3 D.210、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.2、现有20吨货物,要租用货车运走.汽车公司有两种货车,大货车每车可以装7吨货物,运一次要600元,小货车每车可以装4吨,运一次要400元.要使货物全部运走,至少需要运费___元.3、若关于x、y的方程是二元一次方程,则m=_______.4、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为____________.5、已知是关于,的二元一次方程,则______.三、解答题(5小题,每小题10分,共计50分)1、解方程(组)(1)10+2(x﹣)=7(x﹣2);(2);(3).2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;(1)求甲、乙两种商品每件的进价分别为多少元;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?3、阅读下列解方程组的方法,然后回答问题.解方程组解:由①-②得即③,③×16得④②-④得,把代入③得解得:原方程组的解是请你仿照上面的解法解方程组.4、解二元一次方程组:5、解方程组:(1)(2) ---------参考答案-----------一、单选题1、A【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x+y=6是二元一次方程;②x(x+y)=2,即不是二元一次方程;③3x-y=z+1是三元一次方程;④m+=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.2、C【分析】设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.【详解】解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,依题意得: ,解得: , ,故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3、C【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组由①×3+②得10x=5,解得,把代入①中得,所以原方程组的解是.故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.4、C【分析】先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.【详解】解:,①×2得,③+②得,把代入①得,,∵的解都是正数,∴,解得.故选择C.【点睛】本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.5、A【分析】此题中的等量关系有:, ,根据等量关系列出方程即可.【详解】设∠ABD和∠DBC的度数分别为x°,y°,则有整理得:,故选:A.【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.6、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组,得:,∵x、y的值相等,∴,解得.故选:B.【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.7、A【分析】利用代入消元法把①代入②,即可求解.【详解】解:,把①代入②,得:.故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.8、C【分析】设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.【详解】设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,解得这对夫妇共有3个子女.故选C.【点睛】本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.9、D【分析】先把方程的②×5得到③,然后用③-①即可得到答案.【详解】解:,把②×5得:③,用③ -①得:,故选D.【点睛】本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.10、B【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.二、填空题1、3:5:9【解析】【分析】由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.【详解】解:设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,则随机抽出两个标签进价之和可知:,由题意可得第一次抽出两个标签进价之和为:,第二次抽出两个标签进价之和为:,第三次抽出两个标签进价之和为:,又因为,所以< < ,即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,进而可得, ①+②+③得出,且,进货量均为整数,进价均为整数可得,则有,解得:,所以三种商品的进价按有小到大的比为:.故答案为:3:5:9.【点睛】本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.2、1800【解析】【分析】设需要大货车为x次,需要小货车为y次,根据题意列出方程,求出的范围,分三种情况进行讨论,分别求解每种情况所需运费,即可求解.【详解】解:设需要大货车为x次,需要小货车为y次,由题意可得∵都为非负的整数∴当时,,需要小货车运送0次,费用为(元)当时,,需要小货车运送2次,费用为(元)当时,,需要小货车运送4次,费用为(元)当时,,需要小货车运送5次,费用为(元)∵∴最低费用为1800元故答案为:1800【点睛】此题考查了方案的选择问题,解题的关键是理解题意,正确求出每种情况下的费用.3、1【解析】【分析】根据二元一次方程定义可得:|m|=1,且m-1≠0,进而可得答案.【详解】∵关于x、y的方程是二元一次方程,∴|m|=1,且m-1≠0,解得:m=1,故答案为:1【点睛】本题考查了二元一次方程,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.4、【解析】【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的文钱,据此列方程组可得.【详解】解:设甲原有x文钱,乙原有y文钱,根据题意,得:.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5、4【解析】【分析】根据二元一次方程的定义,可得方程组,解得m、n的值,代入代数式即可.【详解】解:由题意得,,解得:,∴4,故填:4.【点睛】本题考查二元一次方程的定义,属于基础题型.三、解答题1、(1)x=;(2)x=﹣4;(3).【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x﹣)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x=;(2)﹣,整理、得,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件【分析】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.【详解】(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的 解得故甲种商品每件进价为100,乙种商品每件进价300元(2)设该超市购进甲种商品m件,根据题意得:(150-100)m+(400-300)(80-m)≥6500解得m≤30∵m为整数∴m的最大整数值为30.即该超市最多购进甲种商品30件.【点睛】本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.3、.【分析】模仿材料发现第一个方程中各项系数都比第二个方程的各项系数都大3,可采用材料方法①﹣②得:x+y=1③,①﹣③×2021 得:x=4,再求y即可.【详解】解:①﹣②得:3x+3y=3,即x+y=1③①﹣③×2021 得:x=4把x=4代入③得:y=-3所以原方程组的解为.【点睛】本题考查解二元一次方程组.掌握抓住方程组的特征,用加减法解方程组是解题关键.①4、【分析】根据加减消元法计算即可.【详解】解:①2得4x+6y=60③②3得9x+6y=75④④③得5x=15 x=3将x=3代入①中6+3y=30y=8∴原方程组的解为【点睛】本题主要考查解二元一次方程组,熟练掌握二元一次方程组的解法是解决本题的关键.5、(1);(2)【分析】(1)利用代入消元法解二元一次方程组;(2)利用加减消元法解二元一次方程组.【详解】解:(1),把②代入①可得:10y-y=-9,解得:y=-1,把y=-1代入②可得:x=-5,∴方程组的解为;(2),②+①,可得:9x=45,解得:x=5,把x=5代入①,可得:4×5-3y=14,解得:y=2,∴方程组的解为.【点睛】本题考查了解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课堂检测,共17页。试卷主要包含了下列方程是二元一次方程的是,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试测试题,共19页。试卷主要包含了下列是二元一次方程的是,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了小明在解关于x,下列是二元一次方程的是,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。