初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共23页。试卷主要包含了下列命题中,是真命题的是,如图,能判定AB∥CD的条件是,下列说法等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠42、下列说法中正确的个数是( )(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.43、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.24、下列命题中,是真命题的是( )A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直5、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'6、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°7、如图,能判定AB∥CD的条件是( )A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠28、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.9、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A.0个 B.1个 C.2个 D.3个10、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )A.个 B.个 C.个 D.个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,.则图中与互补的角是______.2、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.3、如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=_____.
4、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.5、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c; ②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么bc.其中正确的是__.(填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,∠AOD = 130°,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.(1)∠COD = _______ ;(2)平面内射线OM满足∠AOM = 2∠DOM,求∠AOM的大小;(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.2、3.已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.3、如图,CDAB,点O在直线AB上,OE平分∠BOD,OF⊥OE,∠D=110°,求∠DOF的度数.4、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.5、已知:锐角∠AOB.(1)若∠AOB=65°,则∠AOB的余角的度数为________度.(2)若∠AOB=53°17ʹ,则∠AOB的补角的度数为________.(3)若∠AOB=31°12ʹ,计算:∠AOB=___________.(4)若∠AOB=20°21ʹ,计算:3∠AOB. ---------参考答案-----------一、单选题1、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.2、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.3、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.4、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.5、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.6、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.7、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.8、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.9、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确; ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.10、B【分析】根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.【详解】解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;②相等的角不一定是对顶角,故为假命题;③能被2整除的数不一定能被4整除,故为假命题;④两点之间线段最短,故为真命题;故选B.【点睛】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.二、填空题1、【分析】利用互补的定义得出与互补的角.【详解】解:∵,,∴,,∴,即∴与互补的角是: 故答案为: 【点睛】本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.2、130°或50°【分析】根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可【详解】①如图,
, , ②如图,
, ,综上所述,或故答案为:130°或50°【点睛】本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.3、33°【分析】由题意直接根据∠2=180°﹣∠COE﹣∠1,进行计算即可得出答案.【详解】解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.【点睛】本题考查余角和补角的知识,属于基础题,注意数形结合思维分析的运用.4、35【分析】根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴ ,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.5、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;②如果ba,ca,那么bc,正确;③如果b⊥a,c⊥a,那么bc,错误;④如果b⊥a,c⊥a,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.三、解答题1、(1);(2)∠AOM的大小为或(3)旋转时间t(秒)的取值范围为【解析】【分析】(1),用分别表示出与的大小,利用角之间的关系,即可求解.(2)分射线OM在∠AOD 的内部和外部两类情况进行讨论,利用角与角之间的关系,即可求出答案.(3)先观察到,寻找临界情况,利用角的关系求出对应两种临界情况下的旋转角度,进而求出时间t(秒)的取值范围.【详解】(1)解:设:,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.,。,,解得:, 故.(2)解:当射线OM在∠AOD 的内部时,如下图所示:∠AOD = 130°,且∠AOM = 2∠DOM, 当射线OM在∠AOD 的外部时,如下图所示:∠AOD = 130°,且∠AOM = 2∠DOM, 故∠AOM的大小为或.(3)解:有(1)可得:, 射线OP为∠AOB的平分线,OQ为∠COD的平分线,,,可以观察到:,若要求解时间的取值范围,需要找到临界情况,当与重合时,此时恰好有,, 如下图所示:可以观察到,若与未重合之前,必有一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最小值, 由题意可知:一共旋转了,故时间,,当与重合时,此时有,,如下图所示:若此时继续往下旋转,必有,一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最大值,由题意可知:一共旋转了,故时间,,综上所述:.【点睛】本题主要是考查了求解角度大小、角平分线的性质以及角中的动点问题,熟练地利用角与角之间的关系,求解未知角的度数,针对求解动点的时间取值范围,尝试利用条件,找到满足题意的临界情况,是求解该题的关键.2、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.3、【解析】【分析】根据平行线的性质求得,根据角平分线和垂直求解即可.【详解】解:∵∴∵OE平分∠BOD∴又∵OF⊥OE∴∴故答案为:【点睛】此题考查了平行线、角平分线以及垂直的性质,解题的关键是掌握并利用它们的性质进行求解.4、平行,见解析【解析】【分析】先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.【详解】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC.∵∠ABC=∠ADC,∴∠3=∠2.又∵∠1=∠2,∴∠3=∠1.∴CD∥AB(内错角相等,两直线平行).【点睛】本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.5、(1)25°;(2)126°43ʹ;(3)15°36ʹ;(4)61°3ʹ.【解析】【分析】(1)根据余角的性质,即可求解;(2)根据补角的性质,即可求解;(3)用 乘以∠AOB,即可求解;(4)用3乘以∠AOB,即可求解.【详解】解:(1)∠AOB的余角的度数为 (2) ; (3) ;(4)3∠AOB=3×20°21ʹ=60°63ʹ=61°3ʹ.【点睛】本题主要考查了余角和补角,角的倍分关系,熟练掌握余角和补角的性质,角的倍分关系是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共20页。试卷主要包含了下列命题中,真命题是,下列命题是假命题的有等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共23页。试卷主要包含了命题,若的余角为,则的补角为等内容,欢迎下载使用。
这是一份初中第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了下列说法正确的个数是,下列命题中是真命题的是等内容,欢迎下载使用。