初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共21页。试卷主要包含了若的补角是150°,则的余角是,一个角的补角比这个角的余角大.,下列命题中,是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )A.40° B.50° C.140° D.150°2、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°3、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠44、若的补角是150°,则的余角是( )A.30° B.60° C.120° D.150°5、一个角的补角比这个角的余角大( ).A.70° B.80° C.90° D.100°6、若∠α=73°30',则∠α的补角的度数是( )A.16°30' B.17°30' C.106°30' D.107°30'7、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).A. B.C. D.8、下列命题中,是真命题的是( )A.同位角相等 B.同旁内角相等,两直线平行C.平行于同一直线的两直线平行 D.相等的角是对顶角9、如图,已知和都是直角,图中互补的角有( )对.A.1 B.2 C.3 D.010、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠α与∠β互余,且∠α=40°,则∠β的度数为________.2、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.
3、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.4、已知,则的余角是________.5、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,点A,O,B在同一条直线上,,分别平分和.(1)求的度数.(2)如果,求的度数.2、完成下列证明:已知,,垂足分别为、,且,求证.证明:,(已知),( )( )( )又(已知)( )( )3、如图1,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC=∠AOB,OD平分∠AOC.(1)分别求∠AOB的补角和∠AOC的度数;(2)现有射线OE,使得∠BOE=30°.①小明在图2中补全了射线OE,根据小明所补的图,求∠DOE的度数;②小静说:“我觉得小明所想的情况并不完整,∠DOE还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE的其他结果;若不正确,请说明理由.4、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.5、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BD=AB;(2)过点C画CE⊥AB,垂足为E;(3)点C到直线AB的距离是 个单位长度;(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 . ---------参考答案-----------一、单选题1、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).
故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2、B【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:
∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.3、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.4、B【分析】根据补角、余角的定义即可求解.【详解】∵的补角是150°∴=180°-150°=30°∴的余角是90°-30°=60°故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角5、C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.【详解】解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x,根据题意得:180°-x-(90°-x)=90°,故选:C.【点睛】本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.6、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.7、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A、+=180°−90°=90°,互余;B、+=60°+30°+45°=135°;C、根据同角的余角相等,可得=;D、+=180°,互补;故选:C.【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.8、C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.9、B【分析】如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.【详解】解:如图,延长BO至点E.∵∠BOD=90°,∴∠DOE=180°−∠DOB=90°.∴∠DOE=∠DOB=∠AOC=90°.∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.∴∠AOE=∠COD,∠AOD=∠BOC.∵∠AOE+∠AOB=180°,∴∠COD+∠AOB=180°.综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.故选:B.【点睛】本题主要考查补角,熟练掌握补角的定义是解决本题的关键.10、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.二、填空题1、50°【分析】根据两个角互余,则两个角相加之和为90°,进行求解即可.【详解】解:∵∠α与∠β互余,且∠α=40°,∴∠β=90°-∠α=50°,故答案为:50°.【点睛】本题考查了求一个角的余角,熟知两个角互余则它们之和等于90°是解答本题的关键.2、68【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.
【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.3、【分析】根据,可得,再根据对顶角相等即可求出的度数.【详解】解:∵,∴∴∵∴故答案为:【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.4、【分析】根据互余两角的和等于90°,即可求解.【详解】解:∵,∴的余角是 .故答案为:【点睛】本题主要考查了余角的性质,熟练掌握互余两角的和等于90°是解题的关键.5、【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)根据角平分线的定义,平角的定义求解即可;(2)根据角平分线的定义,互补和互余的意义计算即可得出答案.【详解】解:(1)如图,∵是的平分线,∴.∵是的平分线,∴.∴.(2)由(1)可知.∴.【点睛】本题考查角平分线的定义、平角的定义,互余、互补的意义以及角的和差关系,通过图形直观得出各个角之间的关系式正确解答的关键.2、见详解【解析】【分析】根据垂直的定义及平行线的性质与判定可直接进行求解.【详解】证明:,(已知),(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)(内错角相等,两直线平行).【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.3、(1)80°;(2)①110°;②正确, 50°【解析】【分析】(1)根据补角定义求解即可和已知条件直接求解即可;(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;【详解】解:(1)因为∠AOB=120°,所以∠AOB的补角为180°-∠AOB=60°.因为∠AOC=∠AOB,所以∠AOC=×120°=80°;(2)①因为OD平分∠AOC,∠AOC=80°,所以∠AOD=∠AOC=40°,所以∠BOD=∠AOB-∠AOD=80°,所以∠DOE=∠BOD+∠BOE=110°;②正确;如图,射线OE还可能在∠BOC的内部,所以∠DOE=∠BOD-∠BOE=【点睛】本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.4、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【解析】【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31. 【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.5、(1)见解析;(2)见解析;(3)2;(4),平行【解析】【分析】(1)根据网格的特点和题意,延长到,使;(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共23页。试卷主要包含了命题等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共21页。试卷主要包含了下列说法中正确的是,命题,直线等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是,如图,直线AB等内容,欢迎下载使用。