初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了如图,不能推出a∥b的条件是,下列说法中正确的个数是,下列说法正确的个数是,若的补角是125°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°2、已知∠A=37°,则∠A的补角等于( )A.53° B.37° C.63° D.143°3、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,b∥a,c∥a,求证:b∥c;证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠54、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°5、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°6、下列说法中正确的个数是( )(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.47、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.28、下列说法正确的个数是( )①平方等于本身的数是正数;②单项式﹣π2x3y2的次数是7;③近似数7与7.0的精确度不相同;④因为a>b,所以|a|>|b|;⑤一个角的补角大于这个角本身.A.1个 B.2个 C.3个 D.4个9、若的补角是125°,则的余角是( )A.90° B.54° C.36° D.35°10、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个角的补角是这个角的余角的3倍,则这个角是______度.2、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.
3、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.4、如图所示,过点P画直线a的平行线b的作法的依据是___________.5、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:证明:∵AB被直线GH所截,∴_____∵∴______∴______________(________)(填推理的依据).三、解答题(5小题,每小题10分,共计50分)1、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.(1)求∠COE的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)2、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.3、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.5、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数 ---------参考答案-----------一、单选题1、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.2、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.3、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴∠4=∠5.∴b∥c.∴应补充∠4=∠5.故选:D.【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.4、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.5、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.6、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.7、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.8、A【分析】根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.【详解】解:①平方等于本身的数是1和0,故此说法错误;②单项式﹣π2x3y2的次数是5,故此说法错误;③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;故选A.【点睛】本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.9、D【分析】根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.【详解】∵的补角是125°,∴=180°-125°,∴的余角是90°-(180°-125°)=125°-90°=35°,故选D.【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.10、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.二、填空题1、【分析】设这个角为 则这个角的补角为: 这个角的余角为: 根据等量关系一个角的补角是这个角的余角的3倍,列方程,解方程可得.【详解】解:设这个角为 则这个角的补角为: 这个角的余角为: , ,,, 答:这个角为.故答案为:.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.2、68【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.
【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.3、50°【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.4、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,,(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.5、3 180° AB CD 同旁内角互补,两直线平行 【分析】先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.【详解】证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠3=112°∵∠2=68°,∴∠2+∠3=180°,∴AB∥CD,(同旁内角互补,两直线平行)故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.【点睛】本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.三、解答题1、(1)140゜(2)存在,t=2秒或20秒;(3)秒【解析】【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:即当t的值为秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.2、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析【解析】【分析】根据题意画出图形,然后结合题意可进行求解.【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.3、60°【解析】【分析】由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.【详解】解:CD⊥AB于D,FE⊥AB于E,∴,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴,∴.【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【解析】【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.5、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共24页。试卷主要包含了下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份北京课改版第七章 观察、猜想与证明综合与测试复习练习题,共21页。试卷主要包含了若的补角是125°,则的余角是,下列命题,下列命题是假命题的有,下列语句中,是命题的是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试精练,共22页。试卷主要包含了下列说法正确的个数是,若的补角是150°,则的余角是等内容,欢迎下载使用。