年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析:京改版七年级数学下册第七章观察、猜想与证明专题训练试卷(名师精选)

    难点解析:京改版七年级数学下册第七章观察、猜想与证明专题训练试卷(名师精选)第1页
    难点解析:京改版七年级数学下册第七章观察、猜想与证明专题训练试卷(名师精选)第2页
    难点解析:京改版七年级数学下册第七章观察、猜想与证明专题训练试卷(名师精选)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第七章 观察、猜想与证明综合与测试课时练习

    展开

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时练习,共25页。
    京改版七年级数学下册第七章观察、猜想与证明专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中是真命题的是(    A.对顶角相等 B.两点之间,直线最短C.同位角相等 D.同旁内角互补2、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点CD分别落在点C′,D′处,DEBF交于点G.已知∠BGD′=26°,则∠α的度数是(   
    A.77° B.64° C.26° D.87°3、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为(  )A.40° B.50° C.140° D.150°4、如图,下列条件中,不能判断的是(    A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠45、如图,若要使平行,则绕点至少旋转的度数是(    A. B. C. D.6、如图所示,ABCD,若∠2是∠1的2倍,则∠2等于(  )A.60° B.90° C.120° D.150°7、如图,平行线ABCD被直线AE所截.若∠1=70°,则∠2的度数为(    A.80° B.90° C.100° D.110°8、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为(  )A.75°14′ B.59°86′ C.59°46′ D.14°46′9、对于命题“如果,那么.”能说明它是假命题的反例是(    A. B.C. D.10、如图,直线相交于点平分,给出下列结论:①当时,;②的平分线;③若时,;④.其中正确的结论有(    A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知 ABCDEFBCADAC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
     2、图中∠AOB的余角大小是 _____°(精确到1°).
     3、如图,已知AOOCOBOD,∠COD=42°,则∠AOB=__________.4、如图,已知ABCDBE平分∠ABCDE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.5、已知互为补角,且,则______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,中,点分别在上,于点(1)求证:(2)若平分,求的度数.2、如图,如果∠1=60°,∠2=120°,∠D=60°,那么ABCD平行吗?BCDE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)ABC=∠1 (①   ∴∠ABC=60°(等量代换)又∵∠2=120°(已知)∴(②     )+∠2=180°(等式的性质)ABCD (③     又∵∠2+∠BCD=(④   °)∴∠BCD=60°(等式的性质)∵∠D=60°(已知)∴∠BCD=∠D (⑤     BCDE (⑥     3、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为   °,∠CON的度数为   °;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为   °;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为   °;∠DOC与∠BON的数量关系是∠DOC    BON(填“>”、“=”或“<”);(4)如图4,MNABON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为     °;∠AOM﹣∠CON的度数为   °4、已知ABCD,点EAB上,点FDC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB又∵AB∥CDMN∥CD(        )MN∥AB∴∠A=(        )(        )MN∥CD∴∠D      (        )∴∠AGD=∠AGM+∠DGM=∠A+∠D【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GABDHAH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.5、已知∠α=76°42',∠β=41°41'.求:(1)∠β的余角;(2)∠α与∠β的2倍的和. ---------参考答案-----------一、单选题1、A【分析】根据对顶角相等,两点之间,线段最短,两直线平行,同位角相等,同旁内角互补进行判断求解即可.【详解】解:A、对顶角相等,是真命题,符合题意;B、两点之间,直线最短,是假命题,应该是两点之间,线段最短,不符合题意;C、同位角相等,是假命题,应该是两直线平行,同位角相等,不符合题意;D、同旁内角互补,是假命题,应该是两直线平行,同旁内角互补,不符合题意;故选A.【点睛】本题主要考查了判断命题真假,解题的关键在于能够熟知相关定义和定理.2、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.3、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.4、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:,内错角相等,,故本选项错误,不符合题意;,同位角相等,,故本选项错误,不符合题意;,同旁内角互补,,故本选项错误,不符合题意;,它们不是内错角或同位角,的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.5、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,l1l2∴∠AOB=∠OBC=42°,∴80°-42°=38°,l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.6、C【分析】先由ABCD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵ABCD∴∠1=∠CEF又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.7、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,ABDC∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.8、C【分析】观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.【详解】解:∠β=180°﹣90°﹣∠α=90°﹣30°14′=59°46′.故选:C.【点睛】本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.9、A【分析】根据假命题的概念、角的计算解答.【详解】解:当时,,但命题“如果,那么”是假命题,故选:A.【点睛】本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE∴当∠AOF=50°时,∠DOE=50°;故①正确;OB平分∠DOG∴∠BOD=∠BOG∴∠BOD=∠BOG=∠EOF=∠AOC故④正确;∴∠BOD=180°-150°=30°,故③正确;的平分线,则∠DOE=∠DOG∴∠BOG+∠BOD=90°-∠EOE∴∠EOF=30°,而无法确定∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.二、填空题1、5【分析】ABCDEF,可得∠AGE=∠GAB=∠DCA;由BCAD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.【详解】解:∵ABCDEF∴∠AGE=∠GAB=∠DCABCAD∴∠GAE=∠GCF又∵AC平分∠BAD∴∠GAB=∠GAE∵∠AGE=∠CGF∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF∴图中与∠AGE相等的角有5个故答案为:5.【点睛】本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.2、63【分析】根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.【详解】解:由量角器上的度数可知,∠AOB=27°,∴∠AOB的余角的度数=90°-∠AOB=63°,故答案为:63.【点睛】本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.3、138°【分析】根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB【详解】解:∵AOOCOBOD∴∠AOC=∠DOB=90°,又∵∠COD=42°,∴∠BOC=90°-∠COD=90°-42°=48°,∴∠AOB=∠AOC+∠BOC=90°+48°=138°.【点睛】本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.4、【分析】EFAB,证明ABEFCD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出【详解】解:如图,作EFABABCDABEFCD∴∠ABE=∠BEF,∠CDE=∠DEF∴∠BED=∠BEF+∠DEF=∠ABE+∠CDEBE平分∠ABCDE平分∠ADC故答案为:【点睛】本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.5、【分析】根据题意可得,即可求解.【详解】解:∵互为补角,故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.三、解答题1、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC=180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFEEF//AB∴∠ADE=∠1,又∵∴∠ADE=∠B,DE//BC(2)∵平分∴∠ADE=∠EDCDE//BC∴∠ADE=∠B∴∠5+∠ADE+∠EDC=180°,解得:∴∠ADC=2∠B=72°,EF//AB∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【解析】【分析】先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE【详解】解∵∠1=60°(已知)ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换),又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),AB∥CD (同旁内角互补,两直线平行),又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质),∵∠D=60°(已知),∴∠BCD=∠D (等量代换),BC∥DE (内错角相等,两直线平行),故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.3、(1)120;150;(2)30°;(3)30,=;(4)150;30.【解析】【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON故答案为30,=;(4)∵MNAB∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.4、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB,由MN∥ABPQAB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CDPQCD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MNAB又∵AB∥CDMN∥CD(平行于同一条直线的两条直线平行),MN∥AB∴∠A=∠AGM(两直线平行,内错角相等),MN∥CD∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MNAB又∵AB∥CDMN∥CDMN∥AB∴∠A=∠AGMMN∥CD∴∠D=∠DGM∴∠AGD=∠AGM-∠DGM=∠A-∠D 应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB又∵AB∥CDMN∥CDPQCDMN∥ABPQAB∴∠BAG=∠AGM,∠BAH=∠AHPMN∥CDPQCD∴∠CDG=∠DGM,∠CDH=∠DHP∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,AH平分∠BAG∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°. 【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.5、(1)48°19';(2)160°4'【解析】【分析】(1)根据互为余角的两个角的和为90度可得的余角,将代入计算即可;(2)将代入,然后计算即可.【详解】解:(1)的余角(2)【点睛】本题考查了余角与补角,以及度分秒的换算,解题的关键是掌握如果两个角的和等于(直角),就说这两个角互为余角.即其中一个角是另一个角的余角;度、分、秒是常用的角的度量单位.1度分,即,1分秒,即 

    相关试卷

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共20页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    初中数学第七章 观察、猜想与证明综合与测试同步达标检测题:

    这是一份初中数学第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,命题,如图,下列条件中能判断直线的是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题:

    这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了如图,能判定AB∥CD的条件是,下列命题是假命题的有等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map