北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、由方程组可以得出关于x和y的关系式是( )
A.B.C.D.
2、在某场CBA比赛中,某位运动员的技术统计如下表所示:
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6B.6,5C.4,7D.7,4
3、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为( )
A.6B.8C.10D.12
4、已知,则( )
A.B.C.D.
5、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣B.C.D.﹣
6、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )
A.5组B.6组C.7组D.8组
7、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
A.15B.17C.19D.21
8、下列方程组中,是二元一次方程组的是( )
A.B.C.D.
9、用代入法解方程组,以下各式正确的是( )
A.B.
C.D.
10、下列各组数中,是二元一次方程组的解的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式组的解集为.则关于、的方程组的解为_____________.
2、在一个的方格中填写个数,使得每行、每列、每条对角线上的三个数之和相等,得到一个的方格称为一个三阶幻方,如图1,在图2方格中填写上一些数,使它构成一个三阶幻方,则的值为______.
3、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.
4、若|x﹣y|+(y+1)2=0,则x+y=_____.
5、已知,用含的式子表示,其结果是_______.
三、解答题(5小题,每小题10分,共计50分)
1、用加减消元法解下列方程组:
(1) (2) (3) (4)
2、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.
(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值.
3、已知方程组的解也是关于、的二元一次方程的一组解,求的值.
4、利用方程组解的定义找到二元一次方程组的解,用代入消元法解这个方程组,并比较一下这两种方法,说说你的体会.
5、解二元一次方程组:.
---------参考答案-----------
一、单选题
1、C
【分析】
分别用x,y表示m,即可得到结果;
【详解】
由,得到,
由,得到,
∴,
∴;
故选C.
【点睛】
本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.
2、B
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
3、D
【分析】
设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.
【详解】
解:设甲组人数为人,乙组人数为人,
由题意得:,
将①代入②得:,
解得,
即原来乙组的人数为12人,
故选:D.
【点睛】
本题考查了二元一次方程组的应用,正确建立方程组是解题关键.
4、B
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
5、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
6、B
【分析】
设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,根据题意得方程8x+7y+(12﹣x﹣y)×5=80,于是得到结论.
【详解】
解:设8人组有x组,7人组由y组,则5人组有(12﹣x﹣y)组,
由题意得,8x+7y+(12﹣x﹣y)×5=80,
∴3x+2y=20,
当x=1时,y=,
当x=2时,y=7,
当x=4时,y=4,
当x=6时,y=1,
∴8人组最多可能有6组,
故选B.
【点睛】
本题考查了二元一次方程的应用,正确的理解题意是解题的关键.
7、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
8、C
【分析】
根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.
【详解】
解:A. 第二个方程中的是二次的,故本选项错误;
B.方程组中含有3个未知数,故本选项错误;
C. 符合二元一次方程组的定义,故本选项正确;
D. 第二个方程中的xy是二次的,故本选项错误.
故选C.
【点睛】
:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.
9、B
【分析】
根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.
【详解】
解:由②得,代入①得,
移项可得,
故选B.
【点睛】
本题考查了代入消元法,熟练掌握代入法是解题的关键.
10、B
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
二、填空题
1、
【解析】
【分析】
根据已知解集确定出a与b的值,代入方程组求出解即可.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组的解集为-2
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共19页。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试巩固练习,共20页。试卷主要包含了下列是二元一次方程的是,方程x+y=6的正整数解有等内容,欢迎下载使用。
这是一份数学第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了解方程组的最好方法是,二元一次方程的解可以是,如图,9个大小,二元一次方程组的解是等内容,欢迎下载使用。