


北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题
展开
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了下列方程是二元一次方程的是,已知方程组的解满足,则的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知是二元一次方程组的解,则m+n的值为( )A. B.5 C. D.2、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )A. B. C. D.3、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.4、下列方程组中,是二元一次方程组的是( )A. B. C. D.5、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )A. B. C. D.6、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.7、下列方程是二元一次方程的是( )A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=18、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台9、已知方程组的解满足,则的值为( )A.7 B. C.1 D.10、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A.11支 B.9支 C.7支 D.5支第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个两位数,个位上的数字与十位上的数字之和是10,把这个两位数的个位和十位上的数字调换位置后,得到的数比原来大18,则调换后的数为____.2、现有20吨货物,要租用货车运走.汽车公司有两种货车,大货车每车可以装7吨货物,运一次要600元,小货车每车可以装4吨,运一次要400元.要使货物全部运走,至少需要运费___元.3、已知下列方程,其中是二元一次方程的有________.(1)2x-5=y; (2)x-1=4; (3)xy=3; (4)x+y=6; (5)2x-4y=7;(6);(7);(8);(9);(10).4、若与互为补角,并且的一半比小,则的度数为_________.5、重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.三、解答题(5小题,每小题10分,共计50分)1、已知关于,的方程组,若该方程组的解,的值互为相反数,求的值和方程组的解.2、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).(1)当a=1且b=1时,φ(0,1)= ;(2)若φ(1,2)=(0,4),则a= ,b= ;(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.3、代数式,当x=-2时,代数式的值为4;当x=2时,代数式的值为10,则x=-1时,求代数式的值.4、为了响应“阳光运动一小时”校园体育活动,我校计划再购买一批篮球,已知购买2个品牌的篮球和3个品牌的篮球共需380元;购买4个品牌的篮球和2个品牌的篮球共需360元.(1)求、两种品牌的篮球的单价.(2)我校打算网购20个品牌的篮球和3个品牌的篮球,“双十一”期间,京东购物打折促销,其中品牌打八折,品牌打九折,问:学校购买打折后的篮球所花的费用比打折前节省了多少钱?5、(1)若x+1是多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式.(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值. ---------参考答案-----------一、单选题1、B【分析】根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.【详解】解:∵是二元一次方程组的解,∴,解得,∴m+n=5.故选:B.【点睛】本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.2、A【分析】根据题意可直接进行求解.【详解】解:设每头牛值金x两,每只羊值金y两,由题意得:;故选A.【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.3、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.4、C【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的,故本选项错误;B.方程组中含有3个未知数,故本选项错误;C. 符合二元一次方程组的定义,故本选项正确;D. 第二个方程中的xy是二次的,故本选项错误.故选C.【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.5、B【分析】根据题意,可知设每人出x文,总共y文,再列另一个方程即可.【详解】∵,∴设每人出x文,总共y文,∴另一个方程为,故选B.【点睛】本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.6、A【分析】此题中的等量关系有:, ,根据等量关系列出方程即可.【详解】设∠ABD和∠DBC的度数分别为x°,y°,则有整理得:,故选:A.【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.8、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.9、D【分析】①+②得出x+y的值,代入x+y=1中即可求出k的值.【详解】解:①+②得:3x+3y=4+k,∴,∵,∴,∴,解得:,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得①×4-②×5得,所以,将代入①,得.即.∵,∴,∴x为小于6的正整数,四个选项中只有D符合题意;故选D.【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.二、填空题1、64【解析】【分析】设原来两位数的十位为x,个位为y,根据个位上的数字与十位上的数字之和为10,把个位上的数字与十位上的数字调换位置后,得到新的两位数比原数大18,列方程组求解.【详解】解:设原来两位数的十位为x,个位为y,由题意得, ,解得:,即调换后的数为64.故答案为:64.【点睛】本题考查了二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.2、1800【解析】【分析】设需要大货车为x次,需要小货车为y次,根据题意列出方程,求出的范围,分三种情况进行讨论,分别求解每种情况所需运费,即可求解.【详解】解:设需要大货车为x次,需要小货车为y次,由题意可得∵都为非负的整数∴当时,,需要小货车运送0次,费用为(元)当时,,需要小货车运送2次,费用为(元)当时,,需要小货车运送4次,费用为(元)当时,,需要小货车运送5次,费用为(元)∵∴最低费用为1800元故答案为:1800【点睛】此题考查了方案的选择问题,解题的关键是理解题意,正确求出每种情况下的费用.3、(1)(4)(5)(8)(10)【解析】【分析】根据二元一次方程的定义逐一进行分析判断即可.【详解】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x的次数为2【点睛】本题考查了二元一次方程的概念.解题的关键是熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.4、【解析】【分析】根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.【详解】解:根据题意得,①-②得,,解得,把代入①得,,解得.∴,故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.5、1或5##5或1【解析】【分析】设该校足球队胜了x场,平了y场,负了z场,依题意建立方程组,解方程组从而用k(整数)表示负场数y=kz,根据z为整数,分别求出k的取值,然后求出x、y的值,继而可得出该校足球队负几场即可.【详解】解:设文德中学足球队胜了x场,平了y场,负了z场,由题意得,,把③代入①②得:,解得:(k为整数).又∵z为正整数,∴当k=1时,z=7,y=7,x=3,(因为胜、平、负的场数各不相同,所以,不符合题意,舍去)当k=2时,z=5,y=10,x=2;当k=16时,z=1,y=16,x=0,所以,文德中学足球队负了1或5场.故答案为:1或5.【点睛】本题考查了三元一次组的应用,解答本题的关键是设出未知数列出方程组,用k表示出z的值,根据z为整数,即可分类讨论出z的值.三、解答题1、,【分析】根据x、y互为相反数得出y=-x,代入方程组中的两个方程求解即可.【详解】解:因为,的值互为相反数,所以.将代入中,得,解得,所以,所以原方程组的解是,将,代入中,得:.【点睛】本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.2、(1)(1,﹣1);(2)2,﹣1;(3)【分析】(1)当a=1且b=1时,分别求出x′和y′即可得出答案;(2)根据条件列出方程组即可求出a,b的值;(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到,根据2x-y=0,得到y=2x,代入方程组即可得到答案.【详解】解:(1)当a=1且b=1时,x′=1×0+1×1=1,y′=1×0﹣1×1=﹣1,故答案为:(1,﹣1);(2)根据题意得:,解得:,故答案为:2,﹣1;(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),∴,∵2x﹣y=0,∴y=2x,代入方程组解得:,∴,解得.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.3、【分析】先根据代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,得到,解方程求出,由此求解即可.【详解】解:∵代数式,当x=-2时,代数式的值为4,当x=2时,代数式的值为10,∴解得,,∴ 代数式为即为,当x=-1代入,得.【点睛】本题主要考查了代数式求值和解二元一次方程组,解题的关键在于能够根据题意建立关于a、b的二元一次方程组求出a、b的值.4、(1)A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)学校购买打折后的篮球所花的费用比打折前节省了190元.【分析】(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据“购买2个A品牌的篮球和3个B品牌的篮球共需380元;购买4个A品牌的篮球和2个B品牌的篮球共需360元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,列式计算,即可求出结论.【详解】解:(1)设A品牌的篮球的单价为x元/个,B品牌的篮球的单价为y元/个,根据题意得:,解得:.答:A品牌的篮球的单价为40元/个,B品牌的篮球的单价为100元/个;(2)20×40×(1-0.8)+3×100×(1-0.9)=190(元).答:学校购买打折后的篮球所花的费用比打折前节省了190元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据总价=单价×数量,列式计算.5、(1)a=0;(x+1)(x2x+1);(2)31;【分析】(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3x4+ax3+bx34=(x+1)(x2)•M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案.【详解】解:(1)∵x+1是多项式x3+ax+1的因式,∴当x=1时,x3+ax+1=0,∴1a+1=0,∴a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,∵等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,∴,解得:,∴a的值为0,x3+1=(x+1)(x2x+1);(2)设3x4+ax3+bx34=(x+1)(x2)•M(其中M为二次整式),∴x=1,x=2是方程3x4+ax3+bx34=0的解,∴∴,∴a+b=8+(39)=31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课时作业,共19页。试卷主要包含了已知方程组中,x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共22页。试卷主要包含了方程组的解是,已知方程组中,x,若是方程的解,则等于等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了已知关于x,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
