终身会员
搜索
    上传资料 赚现金

    精品解析2022年京改版七年级数学下册第五章二元一次方程组章节测评练习题

    立即下载
    加入资料篮
    精品解析2022年京改版七年级数学下册第五章二元一次方程组章节测评练习题第1页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组章节测评练习题第2页
    精品解析2022年京改版七年级数学下册第五章二元一次方程组章节测评练习题第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试当堂达标检测题,共22页。试卷主要包含了方程组的解是,若是关于x,用代入消元法解关于等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程组为二元一次方程组的是(    A. B. C. D.2、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为(  )A.48 B.52 C.58 D.643、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为(   A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=84、已知是方程xmy=3的解,那么m的值为(  )A.2 B.﹣2 C.4 D.﹣45、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买(    ).A.11支 B.9支 C.7支 D.5支6、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是(    A. B. C. D.7、方程组的解是(   A. B. C. D.8、若是关于xy的二元一次方程ax-5y=1的解,则a的值为(   A.-5 B.-1 C.9 D.119、用代入消元法解关于的方程组时,代入正确的是(    A. B.C. D.10、下列方程中,①;②;③;④,是二元一次方程的有(    A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、关于abxy的多项式2021am+6bn﹣3xmyn+a3mb2n3﹣4xn1y2m4(其中mn为正整数)中,恰有两项是同类项,则mn=___.2、已知,用含m的代数式表示n,则______.3、若是同类项,则x= ________,y= ________.4、元旦期间,某商场开业,为了吸引更多的人流量,该商场决定举行迎宾抽奖活动.活动规则如下:只要在该商场消费一定的金额,消费者就可以凭借小票去抽奖中心兑换盲盒(盲盒的形状,大小,重量等各种属性完全相同),且盲盒里面分别装有50元、30元、10元、5元的奖金.开业当天商场准备了400个盲盒,且全部被消费者领完.经统计,开业当天上午领取的盲盒中所含奖金的总金额为950元,其中领取含有30元的盲盒的数量是含有10元的盲盒数量的一半,领取含50元的盲盒的数量多于1个,少于5个;下午领取的盲盒中所含奖金的总金额是1240元,下午领取含5元的盲盒的数量比上午领取含5元的盲盒的数量少10个,领取含10元的盲盒的数量是上午领取含10元的盲盒的数量的2倍,领取含30元的盲盒的数量比上午领取含30元的盲盒的数量多5个,含50元的盲盒只有1个被抽中,剩余的盲盒则全被晚上领取完毕,则晚上被领取的盲盒的数量是______.5、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口ABC的机动车辆数如图所示.图中分别表示该时段单位时间通过路段ABBCCA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.三、解答题(5小题,每小题10分,共计50分)1、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定Fm)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定Km)=.若Km)除以4恰好余3,求出所有的“进步数”m2、方程组的解满足2xky=10(k是常数).(1)求k的值;(2)求出关于xy的方程(k-1)x+2y=13的正整数解.3、分别用代入消元法和加减消元法解方程组并说明两种方法的共同点.4、解下列方程组:(1)            (2)5、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱;(2)现计划租用两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少? ---------参考答案-----------一、单选题1、B【分析】根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;【详解】解A.中,xy的次数是2,故A不符合题意;B.是二元一次方程组,故B符合题意;C.y在分母上,故C不符合题意;D.中有3个未知数,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.2、B【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为由图可得:得:代入①得:大长方形的宽为:大长方形的面积为:7个小长方形的面积为:阴影部分的面积为:故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出的等量关系式是解题的关键.3、A【分析】代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,代入得,,解得,故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.4、A【分析】直接将代入xmy=3中即可得出答案.【详解】解:∵是方程xmy=3的解,解得:故选:A.【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.5、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为xyz支,由题意,得①×4-②×5得所以代入①,得x为小于6的正整数,四个选项中只有D符合题意;故选D【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.6、A【分析】根据题意可直接进行求解.【详解】解:设每头牛值金x两,每只羊值金y两,由题意得:故选A.【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.7、C【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组由①×3+②得10x=5,解得代入①中得所以原方程组的解是故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.8、D【分析】代入ax-5y=1解方程即可求解.【详解】解:∵是关于xy的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.9、A【分析】利用代入消元法把①代入②,即可求解.【详解】解:把①代入②,得:故选:A【点睛】本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.10、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;化简后为,不符合定义,此项错误;含有三个未知数不符合定义,此项错误;不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.二、填空题1、##【解析】【分析】分两种情况讨论:当是同类项时,当是同类项时,再根据同类项的定义列方程组,解方程组可得答案.【详解】解:当是同类项时,可得: 经检验:符合题意; 是同类项时, 解得: 经检验,符合题意; 故答案为:【点睛】本题考查的是同类项的概念,二元一次方程组的解法,掌握“含有相同字母,相同字母的指数也相同的单项式是同类项”是解题的关键.2、【解析】【分析】先移项,然后将的系数化为1,即可求解.【详解】解:故答案为:【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数.3、     2     -1【解析】【分析】根据同类项的概念建立关于xy的方程组,解方程组即可得出答案.【详解】是同类项, 解得 故答案为:2,-1.【点睛】本题主要考查同类项,掌握同类项的概念及解二元一次方程组的方法是关键.4、206个【解析】【分析】设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,由下午领取的盲盒的总金额为1240元得,分三种情况:当上午领取的50元盲盒为2个时,3个时,4个时,分别解方程组求解即可.【详解】解:设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,其他盲盒领取的个数见表格,         上午领取的个数下午领取的个数50元盲盒 130元盲盒+510元盲盒y2y5元盲盒xx-10 由题意得,化简得∵上午领取含50元的盲盒的数量多于1个,少于5个,∴当上午领取的50元盲盒为2个时,得化简得解方程组,得∴晚上领取的盲盒的个数为206个;当上午领取的50元盲盒为3个时,得化简得解方程组,得此时为小数,故舍去;当上午领取的50元盲盒为4个时,得化简得解方程组,得(舍去),综上,晚上领取的盲盒的个数为206个,故答案为:206个【点睛】此题考查二元一次方程组的实际应用,正确理解题意设未知数并列得方程组是解题的关键.5、x2x3x1【解析】【分析】先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2x3x1【详解】解:由图可知:所以x2x3x1故答案为:x2x3x1【点睛】本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.三、解答题1、(1);(2)【分析】(1)根据定义Fm)=求解即可;(2)根据题意求得,进而根据以及Km)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数 Km)除以4恰好余3,能被4整除能被4整除,即是整数, ,即的倍数,则是2的倍数综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.2、(1);(2)【分析】(1)先求出方程组的解,再代入方程,即可求出k值;(2)把k的值代入方程得:,再根据xy都是正整数,得到,由此求解即可.【详解】解:(1)把①×2得:③,用②+③得:,解得代入①,解得∴方程组的解为:
    代入得:
    解得:
    (2)把代入方程得:,即xy都是正整数,
    时,时,
    ∴关于xy的方程的正整数解为【点睛】本题主要考查了解一元一次方程和解二元一次方程组,解题的关键在于能够熟练掌握解一元一次方程和解二元一次方程组的方法.3、,两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【分析】根据题意分别直接利用代入消元法与加减消元法求出方程组的解即可.【详解】解:代入消元法:
    由①得:y=7-x③,
    把③代入②得:5x+21-3x=31,
    解得:x=5,
    x=5代入③得:y=2,
    则方程组的解为
    加减消元法:
    ①×5-②得:2y=4,
    解得:y=2,
    y=2代入①得:x=5,
    则方程组的解为
    两种方法的共同点都是设法消去一个未知数,使二元问题转化为一元问题.【点睛】本题考查解二元一次方程组,主要利用了消元的思想,注意掌握消元的方法有代入消元法与加减消元法.4、(1);(2)【分析】(1)用加减消元法解二元一次方程组即可;(2)先化简方程组,再用加减消元解方程组即可.【详解】解:(1)②-①得:解得代入①得:解得:∴方程组的解为(2)由②可得y=2-xy=2-x代入①,可得x=-1,x=-1代入y=2-x,可得y=3,∴方程组的解为【点睛】本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.5、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于xy的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论.【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得解得答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3≤m≤5,又∵m为正整数,m可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元).∵4950<5100<5250,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费. 

    相关试卷

    北京课改版七年级下册第五章 二元一次方程组综合与测试练习题:

    这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,下列方程是二元一次方程的是等内容,欢迎下载使用。

    初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题:

    这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共19页。试卷主要包含了方程组的解是等内容,欢迎下载使用。

    初中北京课改版第五章 二元一次方程组综合与测试巩固练习:

    这是一份初中北京课改版第五章 二元一次方程组综合与测试巩固练习,共22页。试卷主要包含了若方程组的解为,则方程组的解为,如图,9个大小,已知是二元一次方程,则的值为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map