


北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共18页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程组中,不是二元一次方程组的是( ).
A. B. C. D.
2、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )
A. B. C. D.
3、m为正整数,已知二元一次方程组有整数解则m2=( )
A.4 B.1或4或16或25
C.64 D.4或16或64
4、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
5、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )
A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想
6、用加减法将方程组中的未知数x消去后,得到的方程是( ).
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
7、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )
A. B. C. D.
8、二元一次方程的解可以是( )
A. B. C. D.
9、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( )
﹣3 | y |
|
| 1 |
|
4 |
| x |
A.15 B.17 C.19 D.21
10、已知方程,,有公共解,则的值为( ).
A.3 B.4 C.0 D.-1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知方程是二元一次方程,则m=__,n=__.
2、近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有 ___名员工.
3、以下是甲、乙两人关于一个两位数的对话:甲说两个数位上的数字和是12,乙说两个数位上的数字差是2.那么这个两位数是______.
4、若方程组有正整数解,则整数a的值为____.
5、已知二元一次方程,用含的代数式示,则________.
三、解答题(5小题,每小题10分,共计50分)
1、解下列二元一次方程组:
2、已知方程组的解满足x为非正数,y为负数.
(1)求m的取值范围;
(2)在(1)的条件下,若不等式(2m+1)x﹣2m<1的解为x>1,请写出整数m的值.
3、解下列方程组:
(1);
(2).
4、已知关于x,y的二元一次方程组.
(1)当方程组的解为时,求a的值.
(2)当a=﹣2时,求方程组的解.
(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.
5、解方程:
---------参考答案-----------
一、单选题
1、B
【分析】
依据二元一次方程组的定义求解即可.
【详解】
利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;
方程组中,可以整理为所以C也符合;
B中含有三个未知数不符合二元一次方程组的定义.
故答案选B
【点睛】
本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.
2、A
【分析】
观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.
【详解】
解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,
故选:A.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.
3、D
【分析】
把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.
【详解】
解:,
①-②得:(m-3)x=10,
解得:x=,
把x=代入②得:y=,
由方程组为整数解,得到m-3=±1,m-3=±5,
解得:m=4,2,-2,8,
由m为正整数,得到m=4,2,8
则=4或16或64,
故选:D.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
4、A
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
5、A
【分析】
通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.
【详解】
解:在解二元一次方程组时,
将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,
从而将二元一次方程降次转化为一元一次方程求解,
这种解法体现的数学思想是:转化思想,
故选:A.
【点睛】
本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.
6、D
【分析】
根据二元一次方程组的加减消元法可直接进行求解.
【详解】
解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;
故选D.
【点睛】
本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.
7、B
【分析】
根据题意,可知设每人出x文,总共y文,再列另一个方程即可.
【详解】
∵,
∴设每人出x文,总共y文,
∴另一个方程为,
故选B.
【点睛】
本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.
8、A
【分析】
把各个选项答案带进去验证是否成立即可得出答案.
【详解】
解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;
B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
故选A.
【点睛】
本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.
9、D
【分析】
根据题意列出两条等式,求出x,y的值即可.
【详解】
根据题意可得:
,
解得,
x+2y=5+2×8=5+16=21,
故答案为:D.
【点睛】
本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.
10、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
二、填空题
1、 -2 ##0.25
【解析】
【分析】
根据二元一次方程的定义得到:,.据此可以求得、的值.
【详解】
解:方程是二元一次方程,
,,
解得,.
故答案是:;.
【点睛】
本题考查了二元一次方程的定义.解题的关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
2、568
【解析】
【分析】
设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,由题意列出方程,由整数解的思想可求解.
【详解】
解:设甲型巴士a辆,乙型巴士b辆,丙型巴士(11−a)辆,乙型巴士乘载量为x人,
由题意可得:
,
解得:x=,
∵1≤a≤10,且a为整数,
∴,
∴b=4,
∴总人数=4×48+4×24+40×7=568(人),
故答案为:568.
【点睛】
本题考查了三元一次方程组的应用,利用整数解的思想解决问题是本题的关键.
3、57或75##75或57
【解析】
【分析】
设个位上的数字为x,十位上的数字为y,根据题意列出方程即可;
【详解】
设个位上的数字为x,十位上的数字为y,
当时,可得,解得:,
∴这个两位数是75;
当时,可得,解得,
∴这个两位数是57;
∴这个两位数是57或75.
故答案是:57或75.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
4、-3或-1或±2
【解析】
【分析】
由②得,再代入①得,即可得到,最后根据方程组有正整数解即可得到整数a的值.
【详解】
解:,
由②得,
把入①得,
解得,
∵方程组有正整数解,
∴y要为正整数,即要为正整数,
∴或或或
∴a=-3或-1或±2.
故答案为:-3或-1或±2.
【点睛】
本题考查了二元一次方程组的整数解,解题的关键是根据代入法把方程组转化为方程,再根据方程组有正整数解解题.
5、
【解析】
【分析】
把看做已知数表示出即可.
【详解】
解:
方程,
解得:,
∴.
故答案为:.
【点睛】
本题考查了解二元一次方程,解题的关键是将看做已知数表示出.
三、解答题
1、
【分析】
先把方程组进行整理,然后利用代入消元法解方程组,即可得到答案.
【详解】
解:,
整理得:,
由①得:③,
把③代入②,得:,
解得:,
把代入③,得,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法进行解题.
2、(1)﹣2<m≤3;(2)﹣1
【分析】
(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x≤0,y<0,列出不等式求解即可;
(2)先把原不等式移项得到(2m+1)x<2m+1.根据不等式(2m+1)x﹣2m<1的解为x>1,可得2m+1<0,由此结合(1)所求进行求解即可.
【详解】
解:(1)解方程组
用①+②得:,解得③,
把③代入②中得:,解得,
∴方程组的解为:.
∵x为非正数,y为负数,即x≤0,y<0,
∴.
解得﹣2<m≤3;
(2)(2m+1)x﹣2m<1
移项得:(2m+1)x<2m+1.
∵不等式(2m+1)x﹣2m<1的解为x>1,
∴2m+1<0,
解得m.
又∵﹣2<m≤3,
∴m的取值范围是﹣2<m.
又∵m是整数,
∴m的值为﹣1.
【点睛】
本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法.
3、(1);(2).
【分析】
利用加减法解二元一次方程组即可求解.
【详解】
解:(1)
①×3得 ,
②+③得 5x=15,
解得x=3,
把x=3代入①得 3+y=3,
解得y=0,
∴二元一次方程组的解是;
(2)
①×2得 10x-12y=18③,
②×3得 21x-12y=-15④,
④-③得 11x=-33,
解得 x=-3,
把x=-3代入①得 -15-6y=9,
解得y=-4,
∴二元一次方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.
4、(1)3;(2);(3)小冉提出的解法不对,理由见解析
【分析】
(1)把代入中即可得解;
(2)当a=﹣2时,方程组变为,计算即可;
(3)根据判断得出不是方程组的解,计算即可;
【详解】
(1)将代入中得:;
(2)当a=﹣2时,方程组为,
得:,解得:,
∴,
∴方程组的解为;
(3)小冉提出的解法不对,
∵不是方程的解,
∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;
【点睛】
本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.
5、方程组的解是.
【分析】
根据加减消元法求解方程组即可;
【详解】
解:
①-②,得,
解得,
将代入①得,
解得,
所以方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了解方程组的最好方法是,如图,9个大小,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了用代入消元法解关于,如果x,已知二元一次方程组则等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步练习题,共19页。试卷主要包含了设m为整数,若方程组的解x,如图,9个大小等内容,欢迎下载使用。