


数学北京课改版第五章 二元一次方程组综合与测试课时训练
展开
这是一份数学北京课改版第五章 二元一次方程组综合与测试课时训练,共24页。试卷主要包含了已知方程组中,x,如图,9个大小等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用加减法解方程组由②-①消去未知数,所得到的一元一次方程是( )A. B. C. D.2、《九章算术》是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等.交易其一,金轻十三两.问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )A. B.C. D.3、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )A.48 B.52 C.58 D.644、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )A. B. C. D.5、已知方程组中,x、y的值相等,则m等于( ).A.1或-1 B.1 C.5 D.-56、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.7、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )A.﹣ B. C. D.﹣8、下列方程中,①;②;③;④,是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个9、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.C. D.10、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )A.4 B.3 C.2 D.1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.2、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.3、网络时代的到来,让网购成为人们生活中随处可见的操作,快递员也成为一项方便人们生活重要的职业,A,B,C三位快递员在三个不同的快递公司进行派件工作,且每件快递派送费用有一定差别,B快递员的每件快递派送费是A的2倍,且A快递员每件快递派送费为整数.平时每位快递员的每天派送件数基本保持稳定,B快递员每天派送的数量是C的1.5倍,C快递员每天派送的数量为200件,三位快递员平时一天的总收入为800元.由于本周处于双12购物节期间,大量快选带留,三位派送员加班加点进行派送,每件快递派送费不发生变化,每天的派送比平时均有变化,A快递员比平时的1.5倍还多60件,B快递员比平时的2倍多100件,c快递员是平时的3倍,此时每天三位快递员一天总收入增加到1940元则B快递员在双12购物节派送期间每天收入为 _____元.4、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.三、解答题(5小题,每小题10分,共计50分)1、学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉?2、解方程组:(1) (2)3、甲、乙两人同时计算一道整式乘法题:(2x+a)•(3x+b).甲由于抄错了第一个多项式中a的符号,即把+a抄成﹣a,得到的结果为6x2+11x﹣10,乙由于抄漏了第二个多项式中x的系数,即把3x抄成x,得到的结果为2x2﹣9x+10,请你计算出这道整式乘法题的正确结果.4、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m.5、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”. ---------参考答案-----------一、单选题1、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.2、D【分析】根据题目中的等量关系列出二元一次方程组即可.【详解】解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为.故选:D.【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系.3、B【分析】设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.【详解】设小长方形的宽为,长为,由图可得:,得:,把代入①得:,大长方形的宽为:,大长方形的面积为:,7个小长方形的面积为:,阴影部分的面积为:.故选:B.【点睛】本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.4、A【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.【详解】解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:.故选:A.【点睛】此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.5、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组,得:,∵x、y的值相等,∴,解得.故选:B.【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.6、D【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.7、B【分析】解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.【详解】解:,①+②得:2x=14k,即x=7k,将x=7k代入①得:7k+y=5k,即y=﹣2k,将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=.故选:B.【点睛】此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.8、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;②化简后为,不符合定义,此项错误;③含有三个未知数不符合定义,此项错误;④不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.9、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.10、C【分析】先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.【详解】解:由题意得:,联立,由①②得:,解得,将代入①得:,解得,将代入方程得:,解得,故选:C.【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.二、填空题1、【解析】【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x枚,0.8元的邮票y枚,由题意得,故答案为:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是找到题目中的等量关系,列出方程组.2、3【解析】【分析】先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.【详解】解:∵x2a﹣3+yb+2=3是二元一次方程,∴2a﹣3=1,b+2=1,∴a=2,b=﹣1,则a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.3、1400【解析】【分析】设A每件快递派送费为x元,A每天派送件数为y件,C每件快递派送费为z元,根据题意列出x、y、z的方程,进而解方程即可求解.【详解】解:设A每件快递派送费为x元,B每件快递派送费为2x元,C每件快递派送费为y元,A平时每天派送件数为z件,根据题意,B平时每天派送件数为300件,双12购物节期间,A每天派送件数为(1.5z+60)件,B每天派送件数为700件,根据题意,,即:,∵x为整数,∴由得x=1,则有:,解得:,∴B每件快递派送费为2元,则B快递员在双12购物节派送期间每天收入为2×700=1400元,故答案为:1400.【点睛】本题考查三元一次方程组的应用、解二元一次方程组,理解题意,找准等量关系,正确列出方程组,得出x=1是解答的关键.4、3:5:9【解析】【分析】由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.【详解】解:设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,则随机抽出两个标签进价之和可知:,由题意可得第一次抽出两个标签进价之和为:,第二次抽出两个标签进价之和为:,第三次抽出两个标签进价之和为:,又因为,所以< < ,即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,进而可得, ①+②+③得出,且,进货量均为整数,进价均为整数可得,则有,解得:,所以三种商品的进价按有小到大的比为:.故答案为:3:5:9.【点睛】本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.5、【解析】【分析】设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可.【详解】解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,,, 则第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,,即则第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元即即或 为整数,解得或 洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则 第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,即解得都是整数,则能被和整除的数即能被整除 故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.三、解答题1、1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【分析】设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据等量关系:1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉,列方程组,解方程组即可.【详解】解:设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据题意得:,把②代入①×2得,解得,把代入②得,解得x=500,∴,答1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉列方程组是解题关键.2、(1) ;(2)【分析】(1)把①代入②,得到 ,再把 代入①,得到 ,即可求解;(2)由②×3+①,得到 ,再把代入②,得到 ,即可求解.【详解】解:(1) 把①代入②,得: ,解得: ,把 代入①,得: ,解得: ,所以原方程组的解为 ;(2)由②×3+①,得: ,解得: ,把代入②,得: ,解得: ,所以原方程组的解为.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法和代入消元法是解题的关键.3、6x2﹣19x+10【分析】根据甲、乙两人看错的多项式分计算,然后跟甲、乙两人的结果对比,列出关于a,b的方程,即可解答.【详解】解:(2x﹣a)•(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab,∴2b﹣3a=11 ①,(2x+a)•(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab,∴2b+a=﹣9 ②,由①和②组成方程组,解得:,∴(2x﹣5)•(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点睛】本题主要考查多项式乘多项式,熟记法则:用多项式的每一项乘另一个多项式的每一项是解决此类问题的关键,同时还考查了加减法解二元一次方程组.4、(1),;(2)【分析】(1)根据定义F(m)=求解即可;(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数则 K(m)除以4恰好余3,则能被4整除即能被4整除,即是整数, 设,即,是的倍数,则是2的倍数或 或则或或综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.5、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示,,根据要求列代数式得=,说明括号中的数为整式即可;(3)设五位“两头蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2),,∵,=,=,又因为,的整数,∴为整数, 一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为(),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和,∴16的亲和数为 ,能被33整除,能被33整除,又2不能被33整除,能被33整除,,且,∴,或. 或(舍去),,,∴或或,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试复习练习题,共17页。试卷主要包含了下列方程中,①x+y=6;②x,若是方程的解,则等于等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试同步测试题,共18页。试卷主要包含了下列方程是二元一次方程的是,已知是方程的解,则k的值为等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试课堂检测,共20页。试卷主要包含了下列是二元一次方程的是,下列方程组为二元一次方程组的是,解方程组的最好方法是等内容,欢迎下载使用。
