


初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共21页。试卷主要包含了已知,则等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x,y的方程是二元一次方程,则m和n的值是( )A. B. C. D.2、用代入法解方程组,以下各式正确的是( )A. B.C. D.3、二元一次方程的解可以是( )A. B. C. D.4、已知,则( )A. B. C. D.5、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.6、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.7、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A.5个 B.6个 C.7个 D.8个8、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x+2y的值是( ) ﹣3y 1 4 x A.15 B.17 C.19 D.219、下列方程中,①;②;③;④,是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个10、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A.1.2元 B.1.05元 C.0.95元 D.0.9元第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A,B,C三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A,B,C三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的,若印制A,B,C三种邮票的单张费用之比为3:2:15,且加印B邮票的总费用是加印三种邮票总费用的,则A邮票原有数量与三种邮票原有总数量之比为______________.2、某学校八年级举行了二元一次方程组速算比赛,并按学生的得分高低对前100名进行表彰奖励,原计划一等奖表彰10人,二等奖表彰30人,三等奖表彰60人,经协商后调整为一等奖表彰20人,二等奖表彰40人,三等奖表彰40人,调整后一等奖平均分降低4.5分,二等奖平均分降低2.5分,三等奖平均分降低0.5分,若调整前一等奖平均分比二等奖平均分高0.8分,则调整后二等奖平均分比三等奖平均分高_________分.3、小张以两种形式储蓄了500元,第一种储蓄的年利率为3.7%,第二种储蓄的年利率为2.25%,一年后得到利息和为15.6元,那么小张以这两种形式储蓄的钱数分别是____元和___元.4、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为____________.5、幻方是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法.三阶幻方是最简单的幻方,又叫九宫格.如图1是由 1,2,3,4,5,6,7,8,9 九个数字组成的一个基本幻方,其对角线、横行、竖列的和都为15.如图2也是一个三阶幻方,中心格是 673;其他八个格中分别是:a,b,知,识,就,是,力,量(这里的字母a,b代表已知数).则“就”代表的数是___(用含a,b的式子表示).三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、如果知道了两个数的和与差,你一定能求出这两个数吗?说说你的理由.3、解方程组:(1) (2)4、计算下列各题: (1) (2)解方程组:.(3)解不等式组:,并把解集在数轴上表示出来.5、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m. ---------参考答案-----------一、单选题1、C【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得将代入①得,故故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.2、B【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.3、A【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.4、B【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.5、A【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.6、B【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.7、D【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.8、D【分析】根据题意列出两条等式,求出x,y的值即可.【详解】根据题意可得: ,解得,x+2y=5+2×8=5+16=21,故答案为:D.【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.9、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程,此项正确;②化简后为,不符合定义,此项错误;③含有三个未知数不符合定义,此项错误;④不符合定义,此项错误;所以只有①是二元一次方程,故选:A.【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.10、B【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,②–①可得:.故选:B.【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.二、填空题1、##7:12【解析】【分析】设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,依题意列出方程组,求解即可.【详解】解:设A,B,C三种邮票的原有数量分别为a,b,c,则A,B,C三种邮票的现有数量分别为2a,3b,2c,由题意得:,由②得:,即③;把③代入①得:,整理得:,即,把代入③得:,∵A邮票原有数量与三种邮票原有总数量之比为,∴,∴A邮票原有数量与三种邮票原有总数量之比为,故答案为:.【点睛】本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.2、8.9【解析】【分析】先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变列出方程,再根据调整前一等奖平均分比二等奖平均分高0.8分列出方程,由此可求得调整后二等奖平均分比三等奖平均分高多少即可.【详解】解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,∵总分不变,∴10x+30y+60z=20(x﹣4.5)+40(y﹣2.5)+40(z﹣0.5),整理可得:x+y﹣2z=21①,∵调整前一等奖平均分比二等奖平均分高0.8分,∴x﹣y=0.8②,由②得:x=y+0.8③,将③代入①得:y+0.8+y﹣2z=21,∴2y﹣2z=21.8,∴y﹣z=10.9,∴(y﹣2.5)﹣(z﹣0.5)=y﹣2.5﹣z+0.5=y﹣z﹣2=10.9﹣2=8.9,故答案为:8.9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找出之间的数量关系,列出方程,再利用消元思想求解.3、 300 200【解析】【分析】根据题意设小张以这两种形式储蓄的钱数分别是元,根据题意列出二元一次方程组,解方程组即可求得答案.【详解】设小张以这两种形式储蓄的钱数分别是元,根据题意得,解得小张以这两种形式储蓄的钱数分别是元和元.故答案为:,.【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.4、【解析】【分析】设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的文钱,据此列方程组可得.【详解】解:设甲原有x文钱,乙原有y文钱,根据题意,得:.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5、2a+b-1346【解析】【分析】由幻方的含义可得:第二个幻方的横行,竖行,对角线的三数之和为2019,从而可得:量=1346-a,知=2019-a-b;再利用知+就+量=2019,代入计算即可得到答案.【详解】解:依题意,可得:量+a=2×673;∴量=1346-aa+b+知=3×673;∴知=2019-a-b;而知+就+量=3×673∴(2019-a-b)+就+(1346-a)=2019;∴就=2a+b-1346故答案为:2a+b-1346【点睛】本题考查的是列代数式,三元一次方程组的解法,正确理解题意列出相应的方程再解方程是解题的关键.三、解答题1、(1);(2)【分析】(1)方程组利用代入消元法求解即可; (2)方程组整理后,方程组利用加减消元法求解即可.【详解】(1)将①代入②得:去括号,合并同类项得:移项,系数化为1,解得:代入①中,解得:∴方程组的解为:;(2)方程②去分母得:,整理得:①×2得:③+④得:,解得:代入①得:∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.2、能,答案不唯一,理由见解析【分析】不妨设,利用加减消元法进行求解.【详解】解:(本题答案不唯一)假设这两个数分别为x和y,不妨设,联立:,①②得:,解得:,将代入①中,得,解得:,.【点睛】本题考查了求解二元一次方程组,解题的关键是掌握加减消元法.3、(1);(2).【分析】(1)应用加减消元法,求出方程组的解即可;(2)先把方程组化简,再应用加减消元法,求出方程组的解即可.【详解】解:(1),①×2得,6x+2y=30③,②+③得,11x=44,解得x=4,把x=4代入①得,y=3,所以方程组的解是;(2),整理得,①×2得,4x+6y=20③,③-②得,5y=15,解得y=3,把y=3代入①得,x=,所以方程组的解是.【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.4、(1)-4;(2);(3), 把解集在数轴上表示见解析.【分析】(1)根据实数的运算法则进行运算,即可得出结论;(2)原方程组运用加减消元法求解即可得出结论;(3)分别解不等式①②,取其解集的并集,由此即可得出不等式组的解集,再将其表示在数轴上即可.【详解】解:(1)= ===-4 (2)解:,①②,得,解得:,把代入①,得,解得:,所以方程组的解是 (3)解:,由①得到,,解得,, 由②得到,, 解得,,, 在数轴上表示如下:.【点睛】本题考查了实数的运算、解一元一次不等式组、解二元一次方程组以及在数轴上表示不等式的解集,解题的关键是:(1)根据实数的运算法则进行运算;(2)熟练掌握方程组的解法;(3)熟练掌握不等式组的解法.本题属于基础题,难度不大,解决该题型题目时,熟练掌握不等式(不等式组以及方程组)的解法是关键.5、(1),;(2)【分析】(1)根据定义F(m)=求解即可;(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数则 K(m)除以4恰好余3,则能被4整除即能被4整除,即是整数, 设,即,是的倍数,则是2的倍数或 或则或或综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.
相关试卷
这是一份2020-2021学年第五章 二元一次方程组综合与测试课时训练,共22页。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份数学七年级下册第五章 二元一次方程组综合与测试测试题,共18页。试卷主要包含了若是关于x,若是方程组的解,则的值为,方程x+y=6的正整数解有等内容,欢迎下载使用。
