![京改版七年级数学下册第五章二元一次方程组专项训练试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12698703/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第五章二元一次方程组专项训练试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12698703/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第五章二元一次方程组专项训练试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12698703/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第五章 二元一次方程组综合与测试综合训练题
展开
这是一份数学七年级下册第五章 二元一次方程组综合与测试综合训练题,共19页。试卷主要包含了下列是二元一次方程的是,若是方程的解,则等于,已知是二元一次方程,则的值为,方程组的解是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知方程,,有公共解,则的值为( ).
A.3B.4C.0D.-1
2、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )
A.-2B.-1C.2D.1
3、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )
A.B.C.D.
4、下列是二元一次方程的是( )
A.3x﹣6=xB.3x=2yC.x﹣=0D.2x﹣3y=xy
5、若是方程的解,则等于( )
A.B.C.D.
6、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米B.80厘米C.100厘米D.120厘米
7、已知是二元一次方程,则的值为( )
A.B.1C.D.2
8、方程组的解是( )
A.B.C.D.
9、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )
A.6或B.2或6C.2或D.2或
10、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某销售商十月份销售X、Y、C三种糖果的数量之比2∶1∶1,X、Y、C三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X种糖果增加的营业额占总增加的营业额的,此时,X种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份Y、C两种糖果的营业额之比为2∶3,则十一月份C种糖果增加的营业额与十一月份总营业额之比为____.
2、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.
3、一元二次方程x﹣3y=8写成用含y的代数式表示x的形式为______.
4、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.
5、已知方程组和有相同的解,则ab=_____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
2、方程组的解满足2x-ky=10(k是常数).
(1)求k的值;
(2)求出关于x,y的方程(k-1)x+2y=13的正整数解.
3、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:
若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?
4、某手机经销商计划同时购进一批甲、乙两种型号的手机,已知每部甲种型号的手机进价比每部乙种型号的手机进价多200元,且购进3部甲型号手机和2部乙型号手机,共需要资金9600元;
(1)求甲、乙型号手机每部进价为多少元?
(2)该店计划购进甲、乙两种型号的手机共20台进行销售,现已有顾客预定了8台甲种型号手机,且该店投入购进手机的资金不多于3.8万元,请求出有几种进货方案?并请写出进货方案.
5、已知关于x,y的方程组的解是正数,化简
---------参考答案-----------
一、单选题
1、B
【分析】
联立,,可得:,,将其代入,得值.
【详解】
,解得,
把代入中得:,
解得:.
故选:B.
【点睛】
本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.
2、C
【分析】
先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.
【详解】
解∵x=y,
∴原方程组可变形为,
解方程①得x=1,
将代入②得,
解得,
故选C.
【点睛】
本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.
3、A
【分析】
根据题意可直接进行求解.
【详解】
解:设每头牛值金x两,每只羊值金y两,由题意得:;
故选A.
【点睛】
本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.
4、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
5、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
6、D
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
7、C
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
8、C
【分析】
先用加减消元法解二元一次方程组,再确定选项即可.
【详解】
解:方程组
由①×3+②得10x=5,
解得,
把代入①中得,
所以原方程组的解是.
故选择C.
【点睛】
本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.
9、A
【分析】
设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.
【详解】
解:∵ABCD是长方形,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为x cm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:A.
【点睛】
本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.
10、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
二、填空题
1、
【解析】
【分析】
根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份X、Y、C三种糖果的销售的数量和单价分别为2x、x、x;y、3y、4y,则10月份X、Y、C三种糖果的销售额比为2:3:4.因问题中涉及到X的10月销售数量,因此可以设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;再根据X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x.可以根据十一月份Y、C两种糖果的营业额之比为2:3算出十一月份C种糖果增加的营业额即可求解.
【详解】
解:设10月份X、Y、C三种糖果的销售的数量分别为2x、x、x;单价分别为y、3y、4y,
∴10月份X、Y、C三种糖果的销售额分别为2xy,3xy,4xy;
∵X种糖果增加的营业额占总增加的营业额的,
∴设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;
又X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,
∴(7x+2xy):(15x+9xy)=3:8,解得x=xy,
∴十一月份X种糖果的营业额为9xy,三种糖果总营业额为24xy,
∴Y,C两种糖果的营业额之和为15xy,
若十一月份Y、C两种糖果的营业额之比为2:3,
则Y、C两种糖果的营业额分别为6xy,9xy;
∴C种糖果增加的营业额为9xy-4xy=5xy,
∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.
【点睛】
本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.
2、16
【解析】
【分析】
根据图1和图2分析可得,,即可的值,进而可得的值
【详解】
由图1可得长方形的长为,宽为,
根据图2可知大长方形的宽可以表示为
解得
故答案为:
【点睛】
本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.
3、3y+8##8+3y
【解析】
【分析】
移项,利用等式的性质变形即可.
【详解】
解: x﹣3y=8
x=3y+8
故答案为:3y+8
【点睛】
本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单.
4、42岁,23岁
【解析】
【分析】
设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设甲现在x岁,乙现在y岁,
依题意,得:,
解得:.
答:甲现在42岁,乙现在23岁.
故答案为:42岁,23岁.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
5、-1
【解析】
【分析】
根据方程组和有相同的解,所以把和组成方程组求出 x、y 的值,再把 x、y 的值代入其他两个方程 和即可求出a 、 b 的值,即可得答案.
【详解】
解:∵方程组和有相同的解,
∴方程组的解也是它们的解,
①× 2+②,得:2x+x= 4-7,
解得:x=-1,
把x = -1代入①,得:-1+y=2,
解得:y=3,
把x =-1, y=3代入得:-a+3= 4
解得:a= -1,
把x =-1, y=3代入得:-1+3b=8,
解得:b=3,
∴ab=(-1)3=-1,
故答案为:-1.
【点睛】
本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.
三、解答题
1、方程组的解是.
【分析】
根据加减消元法求解方程组即可;
【详解】
解:
①-②,得,
解得,
将代入①得,
解得,
所以方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键.
2、(1);(2),
【分析】
(1)先求出方程组的解,再代入方程,即可求出k值;
(2)把k的值代入方程得:,再根据x、y都是正整数,得到,由此求解即可.
【详解】
解:(1),
把①×2得:③,
用②+③得:,解得,
把代入①,解得,
∴方程组的解为:,
将代入得:,
解得:;
(2)把代入方程得:
,即,
∵x、y都是正整数,
∴,
∴,
当时,;
当时,;
∴关于x,y的方程的正整数解为或.
【点睛】
本题主要考查了解一元一次方程和解二元一次方程组,解题的关键在于能够熟练掌握解一元一次方程和解二元一次方程组的方法.
3、甲种车型需9辆,乙种车型需5辆.
【分析】
设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.
【详解】
解:设甲种车型需辆,乙种车型需辆,
根据题意得
解得,
∴甲种车型需9辆,乙种车型需5辆
答:甲种车型需9辆,乙种车型需5辆.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
4、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;
【分析】
(1)设甲型号手机每部进价为元,乙为元,根据题意列出方程组,求解即可;
(2)根据题意列出不等式组,求解即可得出方案.
【详解】
解:(1)解:设甲型号手机每部进价为元,乙为元,由题意得.
,解得
答:甲型号手机每部进价为2000元,乙为1800元.
(2)设甲型号进货台,则乙进货台,由题意可知
解得
故或9或10,
则共有种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台.
【点睛】
本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键.
5、5a+1
【分析】
先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.
【详解】
解:,
①+②,得
2x=8a+10,
∴x=4a+5,
把x=4a+5代入②,得
4a+5+y=3a+9,
∴y=-a+4,
∴,
∵方程组的解是正数,
∴,即4a+5是正数,a-4是负数
∴=.
【点睛】
本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.
车型
甲
乙
运载量(吨/辆)
10
12
运费(元/辆)
700
720
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共19页。试卷主要包含了二元一次方程组的解是,若是关于x,下列方程组为二元一次方程组的是等内容,欢迎下载使用。
这是一份2020-2021学年第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了已知方程组的解满足,则的值为,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共19页。试卷主要包含了二元一次方程的解可以是,若是方程组的解,则的值为等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)