初中北京课改版第五章 二元一次方程组综合与测试课堂检测
展开京改版七年级数学下册第五章二元一次方程组定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
2、一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )
A.1个 B.2个 C.3个 D.4个
3、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
4、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
5、关于的二元一次方程组的解满足,则k的值是( )
A.2 B. C. D.3
6、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).
A., B.2,1 C.-2,1 D.-1,0
7、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
8、下列方程组为二元一次方程组的是( )
A. B. C. D.
9、解方程组的最好方法是( )
A.由①得再代入② B.由②得再代入①
C.由①得再代入② D.由②得再代入①
10、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小张以两种形式储蓄了500元,第一种储蓄的年利率为3.7%,第二种储蓄的年利率为2.25%,一年后得到利息和为15.6元,那么小张以这两种形式储蓄的钱数分别是____元和___元.
2、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.
3、某商铺去批发市场进货甲、乙、丙三种商品,商品甲、乙、丙的进货量之比为4:2:3,且均为整数.回到商铺后,将三种商品的进价标签混淆了(进价均为整数).若随机抽出两个标签,求出进价之和,再乘以购进商品甲的进货量,为2736元;若随机抽出两个标签,求出进价之和,再乘以购进商品乙的进货量,为1596元;若随机抽出两个标签,求出进价之和,再乘以购进商品丙的进货量,为1368元.则三种商品的进价按有小到大的比为__________.
4、某学校八年级举行了二元一次方程组速算比赛,并按学生的得分高低对前100名进行表彰奖励,原计划一等奖表彰10人,二等奖表彰30人,三等奖表彰60人,经协商后调整为一等奖表彰20人,二等奖表彰40人,三等奖表彰40人,调整后一等奖平均分降低4.5分,二等奖平均分降低2.5分,三等奖平均分降低0.5分,若调整前一等奖平均分比二等奖平均分高0.8分,则调整后二等奖平均分比三等奖平均分高_________分.
5、二元一次方程组的解为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.
(1)求F(123)和F(246)的值.
(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m.
2、阳光超市从厂家购进甲、乙两种商品进行销售,若该超市购进甲种商品3件,乙种商品2件,共需花费900元;若购进甲种商品2件,购进乙种商品1件,共需花费500元;
(1)求甲、乙两种商品每件的进价分别为多少元;
(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为150元,乙种商品每件的售价400元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于6500元,那么该超市最多购进甲种商品多少件?
3、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:
车型 | 甲 | 乙 |
运载量(吨/辆) | 10 | 12 |
运费(元/辆) | 700 | 720 |
若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?
4、解二元一次方程组:
5、解下列方程组:
(1);
(2).
---------参考答案-----------
一、单选题
1、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
2、C
【分析】
设这对夫妇的年龄的和为x,子女现在的年龄和为y,这对夫妇共有z个子女;根据本题中的三个等量关系为:此夫妇现在的年龄和=6×其子女现在的年龄和;此夫妇两年前的年龄和=10×其子女两年前的年龄和;此夫妇6年后的年龄和=3×其子女6年后的年龄和.可列出方程组,解方程组即可.
【详解】
设现在这对夫妇的年龄和为x岁,子女现在的年龄和为y岁,这对夫妇共有z个子女,则,
解得
这对夫妇共有3个子女.
故选C.
【点睛】
本题考查了三元一次方程组的应用,根据题意列出方程组并解方程组是解题的关键.
3、B
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
4、B
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
5、B
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
6、A
【分析】
将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可
【详解】
将时,代入,
得 ①,
再由k比b大1得 ②,
①②联立,解得,.
故选:A.
【点睛】
此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.
7、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
8、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
9、C
【分析】
观察两方程中系数关系,即可得到最好的解法.
【详解】
解:解方程组的最好方法是由①得,再代入②.
故选:C.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
10、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
二、填空题
1、 300 200
【解析】
【分析】
根据题意设小张以这两种形式储蓄的钱数分别是元,根据题意列出二元一次方程组,解方程组即可求得答案.
【详解】
设小张以这两种形式储蓄的钱数分别是元,根据题意得,
解得
小张以这两种形式储蓄的钱数分别是元和元.
故答案为:,.
【点睛】
本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.
2、##
【解析】
【分析】
根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.
【详解】
解:设1头牛值金x两,1只羊值金y两,
由题意可得,,
上述两式相加可得,x+y=.
故答案为:.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
3、3:5:9
【解析】
【分析】
由题意设甲、乙、丙的进货量分别为4x、2x、3x,三种商品的进价按有小到大分别设为:a、b、c,继而依据进货量均为整数,进价均为整数得出三种商品的进价后即可得出答案.
【详解】
解:设甲、乙、丙的进货量分别为4x、2x、3x,
三种商品的进价按有小到大分别设为:a、b、c,
则随机抽出两个标签进价之和可知:,
由题意可得第一次抽出两个标签进价之和为:,
第二次抽出两个标签进价之和为:,
第三次抽出两个标签进价之和为:,
又因为,所以< < ,
即第一、二、三次抽出两个标签进价之和分别为:a+c、b+c、a+b,
进而可得,
①+②+③得出,且,进货量均为整数,进价均为整数
可得,则有,
解得:,
所以三种商品的进价按有小到大的比为:.
故答案为:3:5:9.
【点睛】
本题考查不定方程的应用,读懂题意根据题意列出方程并利用消元思维进行分析是解题的关键.
4、8.9
【解析】
【分析】
先设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变列出方程,再根据调整前一等奖平均分比二等奖平均分高0.8分列出方程,由此可求得调整后二等奖平均分比三等奖平均分高多少即可.
【详解】
解:设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,
∵总分不变,
∴10x+30y+60z=20(x﹣4.5)+40(y﹣2.5)+40(z﹣0.5),
整理可得:x+y﹣2z=21①,
∵调整前一等奖平均分比二等奖平均分高0.8分,
∴x﹣y=0.8②,
由②得:x=y+0.8③,
将③代入①得:y+0.8+y﹣2z=21,
∴2y﹣2z=21.8,
∴y﹣z=10.9,
∴(y﹣2.5)﹣(z﹣0.5)=y﹣2.5﹣z+0.5
=y﹣z﹣2
=10.9﹣2
=8.9,
故答案为:8.9.
【点睛】
此题主要考查了三元一次方程组的应用,关键是读懂题意,找出之间的数量关系,列出方程,再利用消元思想求解.
5、
【解析】
【分析】
利用加减消元法解二元一次方程组即可得到答案.
【详解】
解:,
用①+②得:,解得,
把代入①中得:,解得,
∴方程组的解为.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握加减消元法.
三、解答题
1、(1),;(2)
【分析】
(1)根据定义F(m)=求解即可;
(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.
【详解】
解:(1),根据定义,
F(123)
,则
F(246)
(2)设,且为正整数
则
K(m)除以4恰好余3,
则能被4整除
即能被4整除,即是整数,
设,即,
是的倍数,则是2的倍数
或 或
则或或
综上所述,
【点睛】
本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.
2、(1)甲种商品每件进价为100,乙种商品每件进价300元;(2)30件
【分析】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据等量关系:3件甲种商品的花费+2件乙种商品的花费=900;2件甲种商品的花费+1件乙种商品的花费=500,即可列出方程组,解方程组即可;
(2)设该超市购进甲种商品m件,根据不等关系:甲商品的利润+乙商品的利润≥6500,列出不等式,不等式即可,再取不等式解集中最大的整数值即可.
【详解】
(1)设甲种商品每件进价为x元,乙种商品每件进价y元,根据题意的
解得
故甲种商品每件进价为100,乙种商品每件进价300元
(2)设该超市购进甲种商品m件,根据题意得:
(150-100)m+(400-300)(80-m)≥6500
解得m≤30
∵m为整数
∴m的最大整数值为30.
即该超市最多购进甲种商品30件.
【点睛】
本题考查了解二元一次方程组及解不等式的应用,关键是理解题意,找到等量关系和不等关系,然后列出方程组和不等式即可解决问题.
3、甲种车型需9辆,乙种车型需5辆.
【分析】
设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.
【详解】
解:设甲种车型需辆,乙种车型需辆,
根据题意得
解得,
∴甲种车型需9辆,乙种车型需5辆
答:甲种车型需9辆,乙种车型需5辆.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
4、
【分析】
根据加减消元法计算即可.
【详解】
解:
①2得4x+6y=60③
②3得9x+6y=75④
④③得5x=15
x=3
将x=3代入①中
6+3y=30
y=8
∴原方程组的解为
【点睛】
本题主要考查解二元一次方程组,熟练掌握二元一次方程组的解法是解决本题的关键.
5、(1);(2).
【分析】
利用加减法解二元一次方程组即可求解.
【详解】
解:(1)
①×3得 ,
②+③得 5x=15,
解得x=3,
把x=3代入①得 3+y=3,
解得y=0,
∴二元一次方程组的解是;
(2)
①×2得 10x-12y=18③,
②×3得 21x-12y=-15④,
④-③得 11x=-33,
解得 x=-3,
把x=-3代入①得 -15-6y=9,
解得y=-4,
∴二元一次方程组的解是.
【点睛】
本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.
北京课改版第五章 二元一次方程组综合与测试课后作业题: 这是一份北京课改版第五章 二元一次方程组综合与测试课后作业题,共20页。试卷主要包含了若是方程的解,则等于等内容,欢迎下载使用。
数学七年级下册第五章 二元一次方程组综合与测试课后复习题: 这是一份数学七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了二元一次方程的解可以是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题: 这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步训练题,共22页。试卷主要包含了如图,9个大小,用代入消元法解关于,下列各式中是二元一次方程的是等内容,欢迎下载使用。