初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共19页。试卷主要包含了已知方程组中,x,如果与是同类项,那么的值是,已知是方程的解,则k的值为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想2、《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系,其中卷八方程[七]中记载:“今有牛五,羊二,直金十两;牛二、羊五,直金八两,问牛、羊直金几何?”译文:“假设有5头牛,2只羊共值金10两;2头牛,5只羊共值金8两,问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是( )A. B. C. D.3、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.14、已知方程组中,x、y的值相等,则m等于( ).A.1或-1 B.1 C.5 D.-55、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.46、如果与是同类项,那么的值是( )A. B. C. D.7、已知是方程的解,则k的值为( )A.﹣2 B.2 C.4 D.﹣48、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元9、已知是方程5x−ay=15的一个解,则a的值为( )A.5 B.−5 C.10 D.−1010、下列方程中,是关于x的一元二次方程的是( )A.x(x-2)=0 B.x2-1-y=0 C.x2+1=x2-2x D.ax2+c=0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小张以两种形式储蓄了500元,第一种储蓄的年利率为3.7%,第二种储蓄的年利率为2.25%,一年后得到利息和为15.6元,那么小张以这两种形式储蓄的钱数分别是____元和___元.2、方程组有正整数解,则正整数a的值为________.3、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,4、已知关于x、y的二元一次方程组的解为,则a+b的值为 ___.5、如果与是同类项,则x-y的值是______.三、解答题(5小题,每小题10分,共计50分)1、已知关于的方程组.(1)①当a=0时,该方程组的解是__________;②x与y的数量关系是___________(不含字母a);(2)是否存在有理数a,使得?请写出你的思考过程.2、已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.3、如果知道了两个数的和与差,你一定能求出这两个数吗?说说你的理由.4、某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?5、已知关于x,y的二元一次方程组与有相同的解.(1)求x,y的值;(2)求的值. ---------参考答案-----------一、单选题1、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.2、A【分析】根据题意可直接进行求解.【详解】解:设每头牛值金x两,每只羊值金y两,由题意得:;故选A.【点睛】本题主要考查二元一次方程组的应用,熟练掌握二元一次方程的应用是解题的关键.3、C【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组,得:,∵x、y的值相等,∴,解得.故选:B.【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.5、A【分析】如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.【详解】解:如图所示,其中a、b、c、d表示此方格中表示的数,由题意得:,由①得④,由②得⑤,把④和⑤代入③中得,∴,故选A.【点睛】本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.6、A【分析】利用同类项定义列出方程组,求出方程组的解即可得到a与b的值.【详解】解:∵xa+2y3与﹣3x3y2b﹣a是同类项,∴,解得:所以.故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7、C【分析】把代入是方程kx+2y=﹣2得到关于k的方程求解即可.【详解】解:把代入方程得:﹣2k+6=﹣2,解得:k=4,故选C.【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.8、B【分析】设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x元,进价y元则根据题意得:,解得:,答:该商品每件进价155元,标价每件200元.故选:B.【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.9、A【分析】把与的值代入方程计算即可求出的值.【详解】解:把代入方程,得,解得.故选:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.10、A【分析】根据一元二次方程的定义,对选项逐个判断即可,一元二次方程是指化简后,只含有一个未知数并且未知数的次数为2的整式方程.【详解】解:A、含有一个未知数,且未知数次数为2,为一元二次方程,符合题意;B、含有两个未知数,不是一元二次方程,不符合题意;C、,含有一个未知数,不是一元二次方程,不符合题意;D、当时,不是一元二次方程,不符合题意;故选:A【点睛】此题考查了一元二次方程的定义,解题的关键是理解一元二次方程的概念.二、填空题1、 300 200【解析】【分析】根据题意设小张以这两种形式储蓄的钱数分别是元,根据题意列出二元一次方程组,解方程组即可求得答案.【详解】设小张以这两种形式储蓄的钱数分别是元,根据题意得,解得小张以这两种形式储蓄的钱数分别是元和元.故答案为:,.【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.2、2【解析】【分析】先消去 求解再由为正整数,分类求解 结合为正整数求解 再检验此时的是否满足也为正整数,从而可得答案.【详解】解:②得: ①-③得: 当时,方程无解,当时,方程的解为: 为正整数,或或或 解得:或或或 为正整数, 当为正整数,由②得:也为正整数,所以故答案为:2【点睛】本题考查的是二元一次方程的正整数解,掌握“解二元一次方程组的方法及分类讨论”是解本题的关键.3、故答案为: 【点睛】本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.5.5,2,5,7【解析】【分析】设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.【详解】解:设明文为,,,,由题意得:,解得:,则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.4、【解析】【分析】将代入中,求出的值,然后将的值代入求出的值,计算即可.【详解】解:∵关于x、y的二元一次方程组的解为,∴将代入中得:,解得:,即,将、代入中得:,∴,∴,故答案为:.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值.5、-1【解析】【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【详解】解:∵与是同类项,∴,∴,∴,故答案为:-1.【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.三、解答题1、(1)①;②;(2)不存在,思考过程见解析.【分析】(1)①将代入方程组,再利用加减消元法解方程组即可得;②先根据方程组中的第二个方程可得,再将其代入第一个方程即可得;(2)先根据绝对值和偶次方的非负性求出,再利用(1)②的结论进行检验即可得答案.【详解】解:(1)①当时,方程组为,由④③得:,解得,将代入③得:,解得,则该方程组的解是,故答案为:;②,由第二个方程得:,将代入第一个方程得:,整理得:,故答案为:;(2)不存在,思考过程如下:当时,则,即,此时,所以不存在有理数,使得.【点睛】本题考查了利用加减消元法解二元一次方程组、绝对值和偶次方的非负性,熟练掌握消元法是解题关键.2、(1)3;(2);(3)小冉提出的解法不对,理由见解析【分析】(1)把代入中即可得解;(2)当a=﹣2时,方程组变为,计算即可;(3)根据判断得出不是方程组的解,计算即可;【详解】(1)将代入中得:;(2)当a=﹣2时,方程组为,得:,解得:,∴,∴方程组的解为;(3)小冉提出的解法不对,∵不是方程的解,∴不是该方程组的解,则不一定是方程x+2y=a的解,因此不能代入求解;【点睛】本题主要考查二元一次方程组的解得应用,准确分析计算是解题的关键.3、能,答案不唯一,理由见解析【分析】不妨设,利用加减消元法进行求解.【详解】解:(本题答案不唯一)假设这两个数分别为x和y,不妨设,联立:,①②得:,解得:,将代入①中,得,解得:,.【点睛】本题考查了求解二元一次方程组,解题的关键是掌握加减消元法.4、(1)A种树苗每棵的价格40元,B种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A、B两种树苗每棵的价格分别是x元、y元,根据题意列二元一次方程组,解方程组求出x、y的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A种树苗每棵的价格x元,B种树苗每棵的价格y元,根据题意得:,解得:, 答:A种树苗每棵的价格40元,B种树苗每棵的价格10元; (2)=1140元。答:总费用需1140元.【点睛】本题考查二元一次方程组的应用,正确理解题意列出方程求解是解题的关键.5、(1),(2)1.【分析】(1)首先联立两个方程组中不含a、b的两个方程求得方程组的解,(2)根据(1)中方程组的解代入两个方程组中含a、b的两个方程从而得到关于a,b的方程组,求出a、b的值,代入代数式中求值即可.【详解】解:(1)联立不含a、b的两个方程得,解这个方程组得,(2)把,代入得,解得:,∴.【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,代数式的值,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.
相关试卷
这是一份七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了若是关于x,下列方程是二元一次方程的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试综合训练题,共20页。试卷主要包含了已知关于x,用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了二元一次方程组的解是,有铅笔等内容,欢迎下载使用。