搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷:京改版七年级数学下册第五章二元一次方程组章节测试练习题(无超纲)

    精品试卷:京改版七年级数学下册第五章二元一次方程组章节测试练习题(无超纲)第1页
    精品试卷:京改版七年级数学下册第五章二元一次方程组章节测试练习题(无超纲)第2页
    精品试卷:京改版七年级数学下册第五章二元一次方程组章节测试练习题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第五章 二元一次方程组综合与测试同步达标检测题

    展开

    这是一份2020-2021学年第五章 二元一次方程组综合与测试同步达标检测题,共20页。试卷主要包含了下列各式中是二元一次方程的是等内容,欢迎下载使用。
    京改版七年级数学下册第五章二元一次方程组章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为(  )A.6 B.8 C.10 D.122、若方程组的解为,则方程组的解为(  )A. B.C. D.3、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为(    A. B.C. D.4、若关于xy的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为(  )A.﹣ B. C. D.﹣5、如果关于xy的二元一次方程组的解中的xy的值相等,则a的值为(   A.-2 B.-1 C.2 D.16、若xab﹣2ya+b﹣2=0是二元一次方程,则ab的值分别是(    A.1,0 B.0,﹣1 C.2,1 D.2,﹣37、如图,已知长方形中,,点EAD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若全等,则点Q的运动速度是(    A.6或 B.2或6 C.2或 D.2或8、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为(    A.6台 B.7台 C.8台 D.9台9、下列各式中是二元一次方程的是(    A. B. C. D.10、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?(  )A.2 B.3 C.4 D.5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、关于abxy的多项式2021am+6bn﹣3xmyn+a3mb2n3﹣4xn1y2m4(其中mn为正整数)中,恰有两项是同类项,则mn=___.2、已知二元一次方程,用含的代数式示,则________.3、已知关于xy的二元一次方程组的解为,则a+b的值为 ___.4、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中ABC三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%,则甲种粗粮中每袋成本价为 ___元;若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是 ___.5、已知二元一次方程组,则xy=______.三、解答题(5小题,每小题10分,共计50分)1、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y2、学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉?3、表一x3a9y02b表二x91cy43612(1)关于xy二元一次方程2x﹣3y=6和mxny=40的三组解分别如表一、表二所示,则:a     b     c     (2)关于xy二元一次方程组的解是     4、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪.已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元.(1)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?5、若方程组是二元一次方程组,求a的值. ---------参考答案-----------一、单选题1、D【分析】设甲组人数为人,乙组人数为人,根据题意列出方程组,解方程组即可得.【详解】解:设甲组人数为人,乙组人数为人,由题意得:将①代入②得:解得即原来乙组的人数为12人,故选:D.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键.2、B【分析】由整体思想可得,求出xy即可.【详解】解:∵方程组的解为∴方程组的解故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.3、D【分析】若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.【详解】解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:故选D.【点睛】此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.4、B【分析】解方程组求出x=7ky=﹣2k,代入2x+3y=6解方程即可.【详解】解:①+②得:2x=14k,即x=7kx=7k代入①得:7k+y=5k,即y=﹣2kx=7ky=﹣2k代入2x+3y=6得:14k﹣6k=6,解得:k=故选:B【点睛】此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.5、C【分析】先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.【详解】解∵x=y∴原方程组可变形为解方程①得x=1,代入②得解得故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.6、C【分析】根据二元一次方程的定义,可得到关于ab的方程组,解出即可求解.【详解】解:∵xab﹣2ya+b﹣2=0是二元一次方程,解得:故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.7、A【分析】Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BPAE=BQAP=BQAE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点EAD的中点,AD=8cm,AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BPAE=BQ解得,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQAE=BP解得:即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.8、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于mn的二元一次方程组,解之即可得出mn的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得解得:∵5ax=30a+5ax=7.答:要同时开动7台机组.故选:B【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.9、B【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.10、B【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于xy的二元一次方程,结合xy均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得:xy均为正整数,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.二、填空题1、##【解析】【分析】分两种情况讨论:当是同类项时,当是同类项时,再根据同类项的定义列方程组,解方程组可得答案.【详解】解:当是同类项时,可得: 经检验:符合题意; 是同类项时, 解得: 经检验,符合题意; 故答案为:【点睛】本题考查的是同类项的概念,二元一次方程组的解法,掌握“含有相同字母,相同字母的指数也相同的单项式是同类项”是解题的关键.2、【解析】【分析】看做已知数表示出即可.【详解】解:方程解得:故答案为:【点睛】本题考查了解二元一次方程,解题的关键是将看做已知数表示出3、【解析】【分析】代入中,求出的值,然后将的值代入求出的值,计算即可.【详解】解:∵关于xy的二元一次方程组的解为∴将代入中得:解得:,即代入中得:故答案为:【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值.4、     45     或8:9##8:9或【解析】【分析】先用求出甲中粗粮的成本价,再求出1千克B粗粮成本价+1千克C粗粮成本价,得出乙种粗粮每袋售价,然后设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,根据甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.这两种袋装粗粮的销售利润率达到24%,列出方程求出比例关系.【详解】解:∵甲种粗粮每袋售价为58.5元,利润率为30%,∴甲种粗粮中每袋成本价为元,∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,∴1千克B粗粮成本价+1千克C粗粮成本价=45-6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为乙种粗粮每袋成本价为6+2×27=60(元),60×(1+20%)=72(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,即故答案为:45,【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.5、3【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:①+②,得4x+4y12x+y3故答案为:3【点睛】本题考查二元一次方程组的解,熟练掌握加减消元法解二元一次方程组是解题的关键.三、解答题1、【分析】先移项,得到 ,然后等式两边同时除以2,即可求解.【详解】解:∵2x+3y=7,【点睛】本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.2、1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【分析】设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据等量关系:1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉,列方程组,解方程组即可.【详解】解:设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据题意得:把②代入①×2得解得代入②得解得x=500,答1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉列方程组是解题关键.3、(1)6;4;7;(2)【分析】(1)将xay=2,x=9,yb分别代入2x﹣3y=6,可求ab的值;将x=9,y=4,x=1,y=36代入mx+ny=40,得到方程组,求出方程为4x+y=40,再将将xcy=12代入4x+y=40,即可求c的值;(2)用加减消元法求解二元一次方程组即可.【详解】解:(1)将xay=2代入2x﹣3y=6,∴2a﹣6=6,a=6,x=9,yb代入2x﹣3y=6,∴18﹣3b=6,b=4,x=9,y=4,x=1,y=36代入mx+ny=40,①×9,得81m+36n=360③,③﹣②,得80m=320,m=4,m=4代入①得,n=1,∴4x+y=40,xcy=12代入4x+y=40,∴4c+12=40,c=7,故答案为:6,4,7;(2)由(1)可得①×3,得12x+3y=120③,②+③,得14x=126,解得x=9,x=9代入①,得y=4,∴方程组的解为故答案为:【点睛】本题考查了同解方程组,加减消元法解二元一次方程组,掌握二元一次方程组解的定义以及解法是解题的关键.4、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案.【分析】(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得解得答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个.解得:为正整数,∴该校有5种购买方案.【点睛】本题考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键.5、a=﹣3【分析】根据了二元一次方程组的定义,可得a﹣3≠0,解出即可【详解】解:∵方程组是二元一次方程组,a﹣3≠0,a=﹣3.【点睛】本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键. 

    相关试卷

    2021学年第五章 二元一次方程组综合与测试一课一练:

    这是一份2021学年第五章 二元一次方程组综合与测试一课一练,共20页。

    北京课改版七年级下册第五章 二元一次方程组综合与测试练习题:

    这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,下列方程是二元一次方程的是等内容,欢迎下载使用。

    数学七年级下册第五章 二元一次方程组综合与测试课后作业题:

    这是一份数学七年级下册第五章 二元一次方程组综合与测试课后作业题,共18页。试卷主要包含了用代入消元法解关于,如果与是同类项,那么的值是,方程组的解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map