初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试单元测试课后测评
展开
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试单元测试课后测评,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是( ).A. B. C. D.2、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )A.2种 B.3种 C.4种 D.5种3、已知是方程x﹣my=3的解,那么m的值为( )A.2 B.﹣2 C.4 D.﹣44、已知,则( )A. B. C. D.5、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+2y=2x+2y C.x=y2+1 D.6、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.7、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )A. B.C. D.8、下列各方程中,是二元一次方程的是( )A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=19、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.10、图1是我国古代传说中的洛书,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之”.洛书是一个三阶幻方,就是将已知的9个数填入的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3是一个不完整的幻方,根据幻方的规则,由已知数求出 x的值应为( ).
A.-4 B.-3 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则________.2、为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文,,,对应密文,,,3、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.”则甲、乙现在的年龄分别是______.4、关于x的方程与的解相同,则k的值为____.5、.例如,明文1,2,3,4对应密文5,7,14,1当接收方收到密文9,9,24,28时,则解密得到的明文为 __.6.已知二元一次方程组为,则2x﹣2y的值为 _____.三、解答题(5小题,每小题10分,共计50分)1、若方程组是二元一次方程组,求a的值.2、任意一个三位自然数m,如果满足百位上的数字小于十位上的数字,其百位上的数字与十位上的数字之和等于个位上的数字,则称m为“进步数”.如果在一个“进步数”m的末尾添加其十位上的数字的2倍,恰好得到一个四位数m',则称m'为m的“进步美好数”,并规定F(m)=.例如m=134是一个“进步数”,在134的末尾添加数字3×2=6,得到一个四位数m′=1346,则1346为134的“进步美好数”,F(134)==12.(1)求F(123)和F(246)的值.(2)设“进步数”m的百位上的数字为a,十位上的数字为b,规定K(m)=.若K(m)除以4恰好余3,求出所有的“进步数”m.3、(1)解方程组;(2)解不等式组.4、解下列方程组:(1)(2)5、已知关于的方程组.(1)①当a=0时,该方程组的解是__________;②x与y的数量关系是___________(不含字母a);(2)是否存在有理数a,使得?请写出你的思考过程. ---------参考答案-----------一、单选题1、A【分析】此题中的等量关系有:, ,根据等量关系列出方程即可.【详解】设∠ABD和∠DBC的度数分别为x°,y°,则有整理得:,故选:A.【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.2、B【分析】设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.【详解】解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:,∴,∵,且x、y都为正整数,∴当时,则;当时,则;当时,则;当时,则(不合题意舍去);∴购买方案有3种;故选B.【点睛】本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.3、A【分析】直接将代入x﹣my=3中即可得出答案.【详解】解:∵是方程x﹣my=3的解,∴,解得:,故选:A.【点睛】本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.4、B【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【详解】解:由题意可知: 解得: ,故选:B.【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.5、D【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【详解】解:A、不是整式方程;故错误.B、3x+2y=2x+2y移项,合并同类项,得x=0,只有一个未知数;故错误.C、未知数y最高次数是2;故错误.D、是二元一次方程,故正确.故选:D.【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.6、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.7、B【分析】设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【详解】解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.8、D【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A、=y+5x不是二元一次方程,因为不是整式方程;B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y=1是二元一次方程.故选:D.【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.9、D【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.10、A【分析】如图所示,其中a、b、c、d表示此方格中表示的数,则可得由此即可得到④,⑤,然后把④⑤代入③中即可求解.【详解】解:如图所示,其中a、b、c、d表示此方格中表示的数,由题意得:,由①得④,由②得⑤,把④和⑤代入③中得,∴,故选A.【点睛】本题主要考查了解方程组,解题得关键在于能够利用整体代入的思想进行求解.二、填空题1、15:7:6;【解析】【分析】由三元一次方程组,将用关于的代数式表示出来,再求比值即可.【详解】解:原方程组化为②-①得,.故.∴.故答案为:【点睛】本题考查三元一次方程组的解法,牢记解法步骤并能够灵活应用是解题的重点.2、故答案为: 【点睛】本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.5.5,2,5,7【解析】【分析】设解密得到的明文为,,,,加密规则得出方程组,求出,,,的值即可.【详解】解:设明文为,,,,由题意得:,解得:,则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.3、42岁,23岁【解析】【分析】设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设甲现在x岁,乙现在y岁,依题意,得:,解得:.答:甲现在42岁,乙现在23岁.故答案为:42岁,23岁.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4、2【解析】【分析】由题意根据同解方程解方程的方法联立方程可得,进而即可得出答案.【详解】解:因为与的解相同,且,所以,可得,解得:.故答案为:2.【点睛】本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.5、-2【解析】【分析】利用整体思想,两式相减得到x-y=-1,整体代入到代数式中求值即可.【详解】解:①-②得:x﹣y=﹣1,∴2x﹣2y=2(x﹣y)=2×(﹣1)=﹣2,故答案为:﹣2.【点睛】本题考查了二元一次方程组的应用,利用整体思想,两式相减得到x-y=-1是解题的关键.三、解答题1、a=﹣3【分析】根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可【详解】解:∵方程组是二元一次方程组,∴ 且a﹣3≠0,∴a=﹣3.【点睛】本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.2、(1),;(2)【分析】(1)根据定义F(m)=求解即可;(2)根据题意求得,进而根据以及K(m)除以4恰好余3,根据求得的值,进而求得的值.【详解】解:(1),根据定义,F(123),则F(246)(2)设,且为正整数则 K(m)除以4恰好余3,则能被4整除即能被4整除,即是整数, 设,即,是的倍数,则是2的倍数或 或则或或综上所述,【点睛】本题考查了二元一次方程组以及一元一次不等式的应用,理解题目中的定义是解题的关键.3、(1);(2)【分析】(1)对方程组进行化简,然后利用加减消元法求解即可;(2)分别求得每个不等式的解集,然后取共同的部分即可.【详解】解:(1)方程组,可化简为①+②式得,,解得将代入①式得:,解得故方程组的解为(2)不等式组,解不等式,可得:解不等式,可得:所以不等式组的解集为【点睛】此题考查了二元一次方程组和一元一次不等式组的求解,解题的关键是熟练掌握方程组和不等式组的求解方法.4、(1);(2).【分析】(1)方程整理后利用加减消元法求出解即可;(2)方程利用加减消元法求出解即可.【详解】解:(1),方程组整理得:①-②×2得:x=-1,把x=-1代入②得:-1+y=4,解得:y=5,则方程组的解为;(2),①×2-②得:7y=35,解得:y=5,把y=5代入①得:2x+25=25,解得:x=0,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、(1)①;②;(2)不存在,思考过程见解析.【分析】(1)①将代入方程组,再利用加减消元法解方程组即可得;②先根据方程组中的第二个方程可得,再将其代入第一个方程即可得;(2)先根据绝对值和偶次方的非负性求出,再利用(1)②的结论进行检验即可得答案.【详解】解:(1)①当时,方程组为,由④③得:,解得,将代入③得:,解得,则该方程组的解是,故答案为:;②,由第二个方程得:,将代入第一个方程得:,整理得:,故答案为:;(2)不存在,思考过程如下:当时,则,即,此时,所以不存在有理数,使得.【点睛】本题考查了利用加减消元法解二元一次方程组、绝对值和偶次方的非负性,熟练掌握消元法是解题关键.
相关试卷
这是一份2020-2021学年第五章 二元一次方程组综合与测试课时训练,共22页。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共23页。试卷主要包含了用代入消元法解关于等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级等内容,欢迎下载使用。